Suppr超能文献

从“大数据”角度看功能连接组学

Functional connectomics from a "big data" perspective.

机构信息

National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.

National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.

出版信息

Neuroimage. 2017 Oct 15;160:152-167. doi: 10.1016/j.neuroimage.2017.02.031. Epub 2017 Feb 14.

Abstract

In the last decade, explosive growth regarding functional connectome studies has been observed. Accumulating knowledge has significantly contributed to our understanding of the brain's functional network architectures in health and disease. With the development of innovative neuroimaging techniques, the establishment of large brain datasets and the increasing accumulation of published findings, functional connectomic research has begun to move into the era of "big data", which generates unprecedented opportunities for discovery in brain science and simultaneously encounters various challenging issues, such as data acquisition, management and analyses. Big data on the functional connectome exhibits several critical features: high spatial and/or temporal precision, large sample sizes, long-term recording of brain activity, multidimensional biological variables (e.g., imaging, genetic, demographic, cognitive and clinic) and/or vast quantities of existing findings. We review studies regarding functional connectomics from a big data perspective, with a focus on recent methodological advances in state-of-the-art image acquisition (e.g., multiband imaging), analysis approaches and statistical strategies (e.g., graph theoretical analysis, dynamic network analysis, independent component analysis, multivariate pattern analysis and machine learning), as well as reliability and reproducibility validations. We highlight the novel findings in the application of functional connectomic big data to the exploration of the biological mechanisms of cognitive functions, normal development and aging and of neurological and psychiatric disorders. We advocate the urgent need to expand efforts directed at the methodological challenges and discuss the direction of applications in this field.

摘要

在过去的十年中,功能连接组学研究呈现出爆炸式增长。积累的知识为我们理解健康和疾病状态下大脑的功能网络结构做出了重要贡献。随着创新神经影像学技术的发展、大型脑数据集的建立以及发表研究成果的不断积累,功能连接组学研究已经开始进入“大数据”时代,这为大脑科学的发现带来了前所未有的机遇,同时也面临着各种具有挑战性的问题,如数据采集、管理和分析。功能连接组的大数据具有以下几个关键特征:高空间和/或时间精度、大样本量、脑活动的长期记录、多维生物学变量(如成像、遗传、人口统计学、认知和临床)以及大量已有的发现。我们从大数据的角度回顾了功能连接组学的研究,重点介绍了最新的先进成像采集(如多频带成像)、分析方法和统计策略(如图论分析、动态网络分析、独立成分分析、多变量模式分析和机器学习)方面的方法学进展,以及可靠性和可重复性验证。我们强调了功能连接组大数据在探索认知功能、正常发育和衰老以及神经和精神疾病的生物学机制方面的新发现。我们倡导迫切需要加大力度解决方法学挑战,并讨论该领域的应用方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验