Suppr超能文献

基因组结构方程模型揭示了人类大脑皮层中具有不同遗传结构的潜在表型。

Genomic structural equation modeling reveals latent phenotypes in the human cortex with distinct genetic architecture.

机构信息

Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA.

Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.

出版信息

Transl Psychiatry. 2024 Oct 24;14(1):451. doi: 10.1038/s41398-024-03152-y.

Abstract

Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to map the genetic architecture of cortical surface area (SA) and cortical thickness (CT) for 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance, which we are denoting genetically informed brain networks (GIBNs). Genomic SEM can fit a multivariate GWAS from summary statistics for each of the GIBNs, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA identified 6 GIBNs and CT identified 4 GIBNs, although sensitivity analyses indicated that other structures were plausible. The multivariate GWASs of the GIBNs identified 74 genome-wide significant (GWS) loci (p < 5 × 10), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of GIBN GWASs found that SA-derived GIBNs had a positive genetic correlation with bipolar disorder (BPD), and cannabis use disorder, indicating genetic predisposition to a larger SA in the specific GIBN is associated with greater genetic risk of these disorders. A negative genetic correlation was observed between attention deficit hyperactivity disorder (ADHD) and major depressive disorder (MDD). CT GIBNs displayed a negative genetic correlation with alcohol dependence. Even though we observed model instability in our application of genomic SEM to high-dimensional data, jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across neuroimaging phenotypes offers new insights into the genetics of cortical structure and relationships to psychopathology.

摘要

遗传对人类皮质结构的贡献表现出普遍的多效性。这种多效性可以被利用来识别独特的、受遗传影响的皮质分割,这些分割在神经生物学上与功能、细胞构筑学或其他皮质分割方案不同。我们通过应用基因组结构方程模型(SEM)来研究遗传多效性,该模型用于绘制最近在 ENIGMA 皮质 GWAS 中报告的 34 个大脑区域的皮质表面积(SA)和皮质厚度(CT)的遗传结构。基因组 SEM 使用从 GWAS 汇总统计数据中估计的经验遗传协方差,并使用 LD 得分回归(LDSC)来发现遗传协方差的潜在因素,我们将其表示为受遗传影响的大脑网络(GIBNs)。基因组 SEM 可以拟合每个 GIBN 的多元 GWAS 汇总统计数据,随后可以用于 LD 得分回归(LDSC)。我们发现,皮质 SA 的最佳拟合模型确定了 6 个 GIBN,CT 确定了 4 个 GIBN,尽管敏感性分析表明其他结构也是合理的。GIBN 的多元 GWAS 确定了 74 个全基因组显著(GWS)位点(p < 5 × 10),其中包括许多先前涉及神经影像学表型、行为特征和精神疾病的位点。GIBN GWAS 的 LDSC 发现,SA 衍生的 GIBN 与双相障碍(BPD)和大麻使用障碍呈正遗传相关性,这表明特定 GIBN 中较大的 SA 遗传倾向与这些疾病的更大遗传风险相关。注意缺陷多动障碍(ADHD)和重度抑郁症(MDD)之间观察到负遗传相关性。CT GIBN 与酒精依赖呈负遗传相关性。尽管我们在将基因组 SEM 应用于高维数据时观察到模型不稳定,但联合建模复杂特征的遗传结构,并调查神经影像学表型之间的多元遗传联系,为皮质结构的遗传学及其与精神病理学的关系提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf26/11502831/8e8ff7b5d66c/41398_2024_3152_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验