Suppr超能文献

从宽场钙成像中得出的功能网络特性随觉醒状态和细胞类型而变化。

Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.

出版信息

Neuroimage. 2022 Dec 1;264:119735. doi: 10.1016/j.neuroimage.2022.119735. Epub 2022 Nov 5.

Abstract

To improve 'bench-to-bedside' translation, it is integral that knowledge flows bidirectionally-from animal models to humans, and vice versa. This requires common analytical frameworks, as well as open software and data sharing practices. We share a new pipeline (and test dataset) for the preprocessing of wide-field optical fluorescence imaging data-an emerging mode applicable in animal models-as well as results from a functional connectivity and graph theory analysis inspired by recent work in the human neuroimaging field. The approach is demonstrated using a dataset comprised of two test-cases: (1) data from animals imaged during awake and anesthetized conditions with excitatory neurons labeled, and (2) data from awake animals with different genetically encoded fluorescent labels that target either excitatory neurons or inhibitory interneuron subtypes. Both seed-based connectivity and graph theory measures (global efficiency, transitivity, modularity, and characteristic path-length) are shown to be useful in quantifying differences between wakefulness states and cell populations. Wakefulness state and cell type show widespread effects on canonical network connectivity with variable frequency band dependence. Differences between excitatory neurons and inhibitory interneurons are observed, with somatostatin expressing inhibitory interneurons emerging as notably dissimilar from parvalbumin and vasoactive polypeptide expressing cells. In sum, we demonstrate that our pipeline can be used to examine brain state and cell-type differences in mesoscale imaging data, aiding translational neuroscience efforts. In line with open science practices, we freely release the pipeline and data to encourage other efforts in the community.

摘要

为了促进“从基础到临床”的转化,知识的双向流动至关重要——从动物模型到人类,反之亦然。这需要共同的分析框架,以及开放的软件和数据共享实践。我们共享了一个新的流水线(和测试数据集),用于预处理宽场光学荧光成像数据——这是一种适用于动物模型的新兴模式,以及受人类神经影像学领域近期工作启发的功能连接和图论分析结果。该方法使用包含两个测试案例的数据集进行演示:(1)在清醒和麻醉状态下用兴奋性神经元标记的动物成像数据,以及(2)在清醒动物中具有不同遗传编码荧光标记的数据集,这些标记分别针对兴奋性神经元或抑制性中间神经元亚型。基于种子的连接和图论度量(全局效率、传递性、模块性和特征路径长度)都被证明可用于量化清醒状态和细胞群体之间的差异。清醒状态和细胞类型对经典网络连接具有广泛影响,并且具有不同的频带依赖性。观察到兴奋性神经元和抑制性中间神经元之间的差异,具有生长抑素表达的抑制性中间神经元与表达 Parvalbumin 和血管活性多肽的细胞明显不同。总之,我们证明我们的流水线可用于检查中尺度成像数据中的大脑状态和细胞类型差异,从而促进转化神经科学的努力。按照开放科学实践,我们免费发布流水线和数据,以鼓励社区中的其他努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15f/9808917/d3096bcb1c1e/nihms-1860173-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验