基于 HPMA 的自旋标记纳米颗粒与人血浆蛋白的相互作用 - 无蛋白冠聚合物纳米医学的引入。
Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins - the introduction of protein-corona-free polymer nanomedicine.
机构信息
Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 01 Prague 2, Czech Republic.
出版信息
Nanoscale. 2018 Mar 29;10(13):6194-6204. doi: 10.1039/C7NR09355A.
In this paper, we revised the current understanding of the protein corona that is created on the surface of nanoparticles in blood plasma after an intravenous injection. We have focused on nanoparticles that have a proven therapeutic outcome. These nanoparticles are based on two types of biocompatible amphiphilic copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA): a block copolymer, poly(ε-caprolactone) (PCL)-b-poly(HPMA), and a statistical HPMA copolymer bearing cholesterol moieties, which have been tested both in vitro and in vivo. We studied the interaction of nanoparticles with blood plasma and selected blood plasma proteins by electron paramagnetic resonance (EPR), isothermal titration calorimetry, dynamic light scattering, and cryo-transmission electron microscopy. The copolymers were labeled with TEMPO radicals at the end of hydrophobic PCL or along the hydrophilic HPMA chains to monitor changes in polymer chain dynamics caused by protein adsorption. By EPR and other methods, we were able to probe specific interactions between nanoparticles and blood proteins, specifically low- and high-density lipoproteins, immunoglobulin G, human serum albumin (HSA), and human plasma. It was found that individual proteins and plasma have very low binding affinity to nanoparticles. We observed no hard corona around HPMA-based nanoparticles; with the exception of HSA the proteins showed no detectable binding to the nanoparticles. Our study confirms that a classical "hard corona-soft corona" paradigm is not valid for all types of nanoparticles and each system has a unique protein corona that is determined by the nature of the NP material.
在本文中,我们修正了目前对静脉注射后在纳米颗粒表面形成的蛋白质冠的理解。我们专注于具有已证实治疗效果的纳米颗粒。这些纳米颗粒基于两种类型的基于 N-(2-羟丙基)甲基丙烯酰胺 (HPMA) 的生物相容两亲性嵌段共聚物:嵌段共聚物聚(ε-己内酯) (PCL)-b-聚(HPMA)和带有胆固醇部分的统计 HPMA 共聚物,已在体外和体内进行了测试。我们通过电子顺磁共振 (EPR)、等温滴定量热法、动态光散射和低温透射电子显微镜研究了纳米颗粒与血浆和选定的血浆蛋白的相互作用。共聚物在疏水性 PCL 的末端或亲水性 HPMA 链上用 TEMPO 自由基标记,以监测由于蛋白质吸附而引起的聚合物链动力学变化。通过 EPR 和其他方法,我们能够探测纳米颗粒与血液蛋白质(特别是低和高密度脂蛋白、免疫球蛋白 G、人血清白蛋白 (HSA) 和人血浆)之间的特定相互作用。结果发现,个别蛋白质和血浆与纳米颗粒的结合亲和力非常低。我们没有在基于 HPMA 的纳米颗粒周围观察到硬壳;除 HSA 外,这些蛋白质与纳米颗粒没有可检测的结合。我们的研究证实,经典的“硬壳-软壳”范式并不适用于所有类型的纳米颗粒,每个系统都具有由 NP 材料性质决定的独特蛋白质壳。