Labusca Luminita, Herea Dumitru-Daniel, Emanuela Minuti Anca, Stavila Cristina, Danceanu Camelia, Plamadeala Petru, Chiriac Horia, Lupu Nicoleta
National Institute of Research and Development for Technical Physics, Iasi, Romania.
Orthopedics and Traumatology Clinic County Emergency Hospital Saint Spiridon, Iasi, Romania.
Front Bioeng Biotechnol. 2021 Oct 18;9:737132. doi: 10.3389/fbioe.2021.737132. eCollection 2021.
Iron oxide based magnetic nanoparticles (MNP) are versatile tools in biology and medicine. Adipose derived mesenchymal stem cells (ADSC) and Wharton Jelly mesenchymal stem cells (WJMSC) are currently tested in different strategies for regenerative regenerative medicine (RM) purposes. Their superiority compared to other mesenchymal stem cell consists in larger availability, and superior proliferative and differentiation potential. Magnetic field (MF) exposure of MNP-loaded ADSC has been proposed as a method to deliver mechanical stimulation for increasing conversion to musculoskeletal lineages. In this study, we investigated comparatively chondrogenic conversion of ADSC-MNP and WJMSC with or without MF exposure in order to identify the most appropriate cell source and differentiation protocol for future cartilage engineering strategies. Human primary ADSC and WJMSC from various donors were loaded with proprietary uncoated MNP. The effect on proliferation and cellular senescence (beta galactosidase assay) in long term culture was assessed. chondrogenic differentiation in pellet culture system, with or without MF exposure, was assessed using pellet histology (Safranin O staining) as well as quantitative evaluation of glycosaminoglycan (GAG) deposition per cell. ADSC-MNP complexes displayed superior proliferative capability and decreased senescence after long term (28 days) culture compared to non-loaded ADSC and to WJMSC-MNP. Significant increase in chondrogenesis conversion in terms of GAG/cell ratio could be observed in ADSC-MNP. MF exposure increased glycosaminoglycan deposition in MNP-loaded ADSC, but not in WJMSC. ADSC-MNP display decreased cellular senescence and superior chondrogenic capability compared to non-loaded cells as well as to WJMSC-MNP. MF exposure further increases ADSC-MNP chondrogenesis in ADSC, but not in WJMSC. Loading ADSC with MNP can derive a successful procedure for obtaining improved chondrogenesis in ADSC. Further studies are needed to confirm the utility of ADSC-MNP complexes for cartilage engineering.
基于氧化铁的磁性纳米颗粒(MNP)是生物学和医学中用途广泛的工具。脂肪来源的间充质干细胞(ADSC)和沃顿胶间充质干细胞(WJMSC)目前正在用于再生医学(RM)目的的不同策略中进行测试。与其他间充质干细胞相比,它们的优势在于来源更丰富,增殖和分化潜力更强。有人提出对负载MNP的ADSC进行磁场(MF)暴露,作为一种提供机械刺激以增加向肌肉骨骼谱系转化的方法。在本研究中,我们比较研究了有无MF暴露情况下ADSC-MNP和WJMSC的软骨生成转化,以确定未来软骨工程策略中最合适的细胞来源和分化方案。来自不同供体的人原代ADSC和WJMSC被加载了专利未涂层的MNP。评估了长期培养中对增殖和细胞衰老(β半乳糖苷酶检测)的影响。在有或无MF暴露的情况下,使用颗粒组织学(番红O染色)以及每个细胞糖胺聚糖(GAG)沉积的定量评估,评估了颗粒培养系统中的软骨生成分化。与未负载的ADSC和WJMSC-MNP相比,ADSC-MNP复合物在长期(28天)培养后显示出更强的增殖能力和更低的衰老水平。在ADSC-MNP中,可以观察到GAG/细胞比率方面软骨生成转化的显著增加。MF暴露增加了负载MNP的ADSC中的糖胺聚糖沉积,但在WJMSC中没有增加。与未负载细胞以及WJMSC-MNP相比,ADSC-MNP显示出更低的细胞衰老和更强的软骨生成能力。MF暴露进一步增加了ADSC中ADSC-MNP的软骨生成,但在WJMSC中没有增加。用MNP加载ADSC可以得出一种成功的方法,用于在ADSC中获得改善的软骨生成。需要进一步的研究来证实ADSC-MNP复合物在软骨工程中的实用性。