University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France.
J R Soc Interface. 2018 Mar;15(140). doi: 10.1098/rsif.2018.0006.
The capacity of living cells to sense their population density and to migrate accordingly is essential for the regulation of many physiological processes. However, the mechanisms used to achieve such functions are poorly known. Here, based on the analysis of multiple trajectories of vegetative cells, we investigate such a system extensively. We show that the cells secrete a high-molecular-weight quorum-sensing factor (QSF) in their medium. This extracellular signal induces, in turn, a reduction of the cell movements, in particular, through the downregulation of a mode of motility with high persistence time. This response appears independent of cAMP and involves a G-protein-dependent pathway. Using a mathematical analysis of the cells' response function, we evidence a negative feedback on the QSF secretion, which unveils a powerful generic mechanism for the cells to detect when they exceed a density threshold. Altogether, our results provide a comprehensive and dynamical view of this system enabling cells in a scattered population to adapt their motion to their neighbours without physical contact.
活细胞感知其种群密度并相应迁移的能力对于许多生理过程的调节至关重要。然而,用于实现这些功能的机制知之甚少。在这里,我们基于对营养细胞的多个轨迹的分析,对这样的系统进行了广泛的研究。我们表明,细胞在其培养基中分泌一种高分子量的群体感应因子(QSF)。这种细胞外信号依次降低细胞的运动,特别是通过下调具有高持续时间的运动模式。这种反应似乎独立于 cAMP 并涉及 G 蛋白依赖性途径。通过对细胞响应函数的数学分析,我们证明了对 QSF 分泌的负反馈,这揭示了一种强大的通用机制,使细胞能够检测到何时超过密度阈值。总的来说,我们的结果提供了对这个系统的全面和动态的观察,使分散群体中的细胞能够在没有物理接触的情况下适应它们的运动与邻居的运动。