Suppr超能文献

H7N9 流感病毒的新威胁:第五波高致病性和低致病性变体在高基因组多样性下的传播和演变。

New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five.

机构信息

National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China.

出版信息

J Virol. 2018 May 14;92(11). doi: 10.1128/JVI.00301-18. Print 2018 Jun 1.

Abstract

H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in wave 5; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny, and genetic evolution of 240 H7N9 viruses in wave 5, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis indicated that the newly emerging highly pathogenic (HP) and low-pathogenicity (LP) H7N9 viruses were cocirculating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as of the surface genes, between the Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1 [A/chicken/Jiangsu/SC537/2013-like], G3 [A/Chicken/Zhongshan/ZS/2017-like], and G11 [A/Anhui/40094/2015-like]). The HP-H7N9 genotype likely evolved from G1 LP-H7N9 by the insertion of a KRTA motif at the cleavage site (CS) and then evolved into 15 genotypes with four different CS motifs, including PKGR/G, PKGR/G, PKRR/G, and PKRR/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor (NAI) resistance (R292K in NA) and mammalian adaptation (e.g., E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics that occurred with mammalian-adapted and NAI-resistant mutations may have contributed to increased numbers of human infections in wave 5. The highest numbers of human H7N9 infections were observed during wave 5 from October 2016 to September 2017. Our results showed that HP-H7N9 and LP-H7N9 had spread virtually throughout China and underwent dynamic reassortment with different subtypes (H7N9/H9N2 and H6Ny) and lineages (Yangtze and Pearl River Delta lineages), resulting in totals of 36 and 3 major genotypes, respectively. Notably, the NAI drug-resistant (R292K in NA) and mammalian-adapted (e.g., E627K in PB2) mutations were found in HP-H7N9 not only from human isolates but also from poultry and environmental isolates, indicating increased risks for human infections. The broad dissemination of LP- and HP-H7N9 with high levels of genetic diversity and host adaptation and drug-resistant mutations likely accounted for the sharp increases in the number of human infections during wave 5. Therefore, more strategies are needed against the further spread and damage of H7N9 in the world.

摘要

H7N9 病毒自 2013 年出现以来已引发了五波感染。第五波出现了最多的人类病例;然而,其根本原因尚未得到彻底阐明。在本研究中,我们综合分析了第五波中 240 株 H7N9 病毒的地理分布、系统发育和遗传进化,包括来自九个省份的 35 株新分离株,这些分离株来自患者和家禽。地理分布分析表明,新出现的高致病性(HP)和低致病性(LP)H7N9 病毒同时流行,导致中国各地的人类和家禽感染。遗传分析表明,LP-H7N9/H9N2/H6Ny 和 HP-H7N9 之间的内部基因以及长江和珠江三角洲谱系之间的表面基因的动态重配导致了至少 36 种基因型,其中三种主要基因型(G1 [A/chicken/Jiangsu/SC537/2013-like]、G3 [A/Chicken/Zhongshan/ZS/2017-like]和 G11 [A/Anhui/40094/2015-like])。HP-H7N9 基因型可能是通过在切割位点(CS)插入 KRTA 基序从 G1 LP-H7N9 进化而来的,然后进化成 15 种具有四种不同 CS 基序的基因型,包括 PKGR/G、PKGR/G、PKRR/G 和 PKRR/G。大约 46%(28/61)的 HP 株属于 G3。重要的是,在少数非人类来源的 HP-H7N9 菌株中发现了神经氨酸酶(NA)抑制剂(NAI)耐药性(NA 中的 R292K)和哺乳动物适应性(例如 PB2 中的 E627K 和 A588V)突变。总之,与哺乳动物适应性和 NAI 耐药性突变相关的增强的流行和遗传特征可能导致第五波中人类感染数量的增加。2016 年 10 月至 2017 年 9 月期间,人类感染 H7N9 的人数最多。我们的结果表明,HP-H7N9 和 LP-H7N9 几乎已经在中国各地传播,并与不同的亚型(H7N9/H9N2 和 H6Ny)和谱系(长江和珠江三角洲谱系)进行了动态重配,分别产生了 36 种和 3 种主要基因型。值得注意的是,不仅在人类分离株中,而且在禽类和环境分离株中都发现了 HP-H7N9 的 NAI 耐药性(NA 中的 R292K)和哺乳动物适应性(例如 PB2 中的 E627K)突变,这表明人类感染的风险增加。LP-和 HP-H7N9 的广泛传播以及高水平的遗传多样性、宿主适应性和耐药性突变可能是导致第五波中人类感染数量急剧增加的原因。因此,需要采取更多的策略来防止 H7N9 在全球范围内的进一步传播和危害。

相似文献

2
Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China.
J Virol. 2017 Nov 14;91(23). doi: 10.1128/JVI.01277-17. Print 2017 Dec 1.
4
Co-circulation of multiple genotypes of influenza A (H7N9) viruses in eastern China, 2016-2017.
Arch Virol. 2018 Jul;163(7):1779-1793. doi: 10.1007/s00705-018-3800-3. Epub 2018 Mar 14.
5
Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China.
J Virol. 2016 May 27;90(12):5561-5573. doi: 10.1128/JVI.03173-15. Print 2016 Jun 15.
6
Phylogenetic and genetic characterization of a 2017 clinical isolate of H7N9 virus in Guangzhou, China during the fifth epidemic wave.
Sci China Life Sci. 2017 Dec;60(12):1331-1339. doi: 10.1007/s11427-017-9152-1. Epub 2017 Oct 9.
7
The Effects of Genetic Variation on H7N9 Avian Influenza Virus Pathogenicity.
Viruses. 2020 Oct 28;12(11):1220. doi: 10.3390/v12111220.
8
Evolutionary dynamics of avian influenza A H7N9 virus across five waves in mainland China, 2013-2017.
J Infect. 2018 Sep;77(3):205-211. doi: 10.1016/j.jinf.2018.05.006. Epub 2018 May 25.

引用本文的文献

1
Genetic diversity of H9N2 avian influenza viruses in poultry across China and implications for zoonotic transmission.
Nat Microbiol. 2025 Jun;10(6):1378-1392. doi: 10.1038/s41564-025-02002-x. Epub 2025 Jun 3.
2
6-methyladnosine of vRNA facilitates influenza A virus replication by promoting the interaction of vRNA with polymerase proteins.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2411554122. doi: 10.1073/pnas.2411554122. Epub 2025 Mar 12.
3
Hemagglutinin with a polybasic cleavage site confers high virulence on H7N9 avian influenza viruses.
Poult Sci. 2025 Feb;104(2):104832. doi: 10.1016/j.psj.2025.104832. Epub 2025 Jan 18.
4
Characterization of Conserved Evolution in H7N9 Avian Influenza Virus Prior Mass Vaccination.
Virulence. 2024 Dec;15(1):2395837. doi: 10.1080/21505594.2024.2395837. Epub 2024 Sep 6.
5
Correlates of disease severity in bluetongue as a model of acute arbovirus infection.
PLoS Pathog. 2024 Aug 16;20(8):e1012466. doi: 10.1371/journal.ppat.1012466. eCollection 2024 Aug.
8
PA-E18G substitution in influenza A virus confers resistance to ZX-7101, a cap-dependent endonuclease inhibitor.
Virol Sin. 2023 Aug;38(4):559-567. doi: 10.1016/j.virs.2023.06.002. Epub 2023 Jun 7.

本文引用的文献

1
CASCIRE surveillance network and work on avian influenza viruses.
Sci China Life Sci. 2017 Dec;60(12):1386-1391. doi: 10.1007/s11427-017-9251-2. Epub 2017 Dec 1.
2
H7N9 virulent mutants detected in chickens in China pose an increased threat to humans.
Cell Res. 2017 Dec;27(12):1409-1421. doi: 10.1038/cr.2017.129. Epub 2017 Oct 24.
4
A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets.
Cell Host Microbe. 2017 Nov 8;22(5):615-626.e8. doi: 10.1016/j.chom.2017.09.008. Epub 2017 Oct 19.
5
Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China.
J Virol. 2017 Nov 14;91(23). doi: 10.1128/JVI.01277-17. Print 2017 Dec 1.
7
Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China.
J Infect. 2017 Jul;75(1):71-75. doi: 10.1016/j.jinf.2017.04.001. Epub 2017 Apr 6.
8
Genesis, Evolution and Prevalence of H5N6 Avian Influenza Viruses in China.
Cell Host Microbe. 2016 Dec 14;20(6):810-821. doi: 10.1016/j.chom.2016.10.022. Epub 2016 Dec 1.
9
Population seroprevalence of antibody to influenza A(H7N9) virus, Guangzhou, China.
BMC Infect Dis. 2016 Nov 4;16(1):632. doi: 10.1186/s12879-016-1983-3.
10
Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China.
J Virol. 2016 May 27;90(12):5561-5573. doi: 10.1128/JVI.03173-15. Print 2016 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验