Suppr超能文献

以蓝舌病为模型的急性虫媒病毒感染的疾病严重程度相关因素。

Correlates of disease severity in bluetongue as a model of acute arbovirus infection.

机构信息

MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.

Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy.

出版信息

PLoS Pathog. 2024 Aug 16;20(8):e1012466. doi: 10.1371/journal.ppat.1012466. eCollection 2024 Aug.

Abstract

Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013 and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to select the key viral and host processes associated with disease pathogenesis. We identified and experimentally validated five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, we showed that an agnostic machine learning approach can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.

摘要

大多数病毒性疾病由于病毒株毒力和/或个体宿主易感性的差异,其临床表现具有变异性。了解区分表现出严重临床症状的病毒感染和较轻微形式的病毒感染的生物学机制,可以为治疗和早期预后标志物提供知识框架。在虫媒病毒感染中尤其如此,大多数临床病例表现为轻度发热性疾病。在这里,我们使用反刍动物中一种自然发生的媒介传播病毒性疾病——蓝舌病,作为一个实验系统来揭示导致不同临床结果的病毒-宿主相互作用的基本机制。与大多数病毒性疾病一样,蓝舌病的临床症状差异很大。我们使用三种蓝舌病毒(BTV)株(BTV-1IT2006、BTV-1IT2013 和 BTV-8FRA2017)在绵羊中复制出不同临床形式的蓝舌病感染。受感染的动物表现出从临床无症状到轻度和严重疾病的临床症状。我们收集并整合了临床、血液学、病毒学和组织病理学数据,对每只感染和未感染对照动物进行了 332 个个体参数的分析。随后,我们使用机器学习来选择与疾病发病机制相关的关键病毒和宿主过程。我们确定并实验验证了影响蓝舌病严重程度的五个不同基本过程:(i)靶器官中的病毒载量和复制,(ii)宿主 I 型干扰素反应的调节,(iii)促炎反应,(iv)血管损伤和(v)免疫抑制。总的来说,我们表明,一种无先验知识的机器学习方法可用于确定影响虫媒病毒感染疾病结果的不同发病机制的优先级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71df/11357116/91b37c15f8bd/ppat.1012466.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验