Suppr超能文献

两种肥厚型心肌病小鼠模型中转录组、miRNome 和线粒体功能的等位基因特异性差异。

Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models.

机构信息

Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.

Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.

出版信息

JCI Insight. 2018 Mar 22;3(6):94493. doi: 10.1172/jci.insight.94493.

Abstract

Hypertrophic cardiomyopathy (HCM) stems from mutations in sarcomeric proteins that elicit distinct biophysical sequelae, which in turn may yield radically different intracellular signaling and molecular pathologic profiles. These signaling events remain largely unaddressed by clinical trials that have selected patients based on clinical HCM diagnosis, irrespective of genotype. In this study, we determined how two mouse models of HCM differ, with respect to cellular/mitochondrial function and molecular biosignatures, at an early stage of disease. We show that hearts from young R92W-TnT and R403Q-αMyHC mutation-bearing mice differ in their transcriptome, miRNome, intracellular redox environment, mitochondrial antioxidant defense mechanisms, and susceptibility to mitochondrial permeability transition pore opening. Pathway analysis of mRNA-sequencing data and microRNA profiles indicate that R92W-TnT mutants exhibit a biosignature consistent with activation of profibrotic TGF-β signaling. Our results suggest that the oxidative environment and mitochondrial impairment in young R92W-TnT mice promote activation of TGF-β signaling that foreshadows a pernicious phenotype in young individuals. Of the two mutations, R92W-TnT is more likely to benefit from anti-TGF-β signaling effects conferred by angiotensin receptor blockers and may be responsive to mitochondrial antioxidant strategies in the early stage of disease. Molecular and functional profiling may therefore serve as aids to guide precision therapy for HCM.

摘要

肥厚型心肌病(HCM)源于肌节蛋白的突变,这些突变会产生不同的生物物理后果,进而可能导致截然不同的细胞内信号和分子病理特征。这些信号事件在很大程度上未被临床试验所涉及,这些临床试验根据临床 HCM 诊断选择患者,而不论其基因型如何。在这项研究中,我们确定了两种 HCM 小鼠模型在疾病早期阶段在细胞/线粒体功能和分子生物标志物方面的差异。我们表明,携带有 R92W-TnT 和 R403Q-αMyHC 突变的年轻小鼠的心脏在转录组、miRNome、细胞内氧化还原环境、线粒体抗氧化防御机制以及对线粒体通透性转换孔开放的易感性方面存在差异。mRNA 测序数据和 microRNA 图谱的途径分析表明,R92W-TnT 突变体表现出与激活致纤维化 TGF-β 信号一致的生物标志物。我们的结果表明,年轻的 R92W-TnT 小鼠的氧化环境和线粒体损伤促进了 TGF-β 信号的激活,预示着年轻人中存在恶性表型。在这两种突变中,R92W-TnT 更有可能受益于血管紧张素受体阻滞剂赋予的抗 TGF-β 信号作用,并且可能对疾病早期的线粒体抗氧化策略有反应。因此,分子和功能分析可能有助于指导 HCM 的精准治疗。

相似文献

引用本文的文献

本文引用的文献

8
Calcium and ROS: A mutual interplay.钙与活性氧:相互作用
Redox Biol. 2015 Dec;6:260-271. doi: 10.1016/j.redox.2015.08.010. Epub 2015 Aug 11.
9
Mitochondrial miRNA (MitomiR): a new player in cardiovascular health.线粒体微小RNA(MitomiR):心血管健康领域的新角色。
Can J Physiol Pharmacol. 2015 Oct;93(10):855-61. doi: 10.1139/cjpp-2014-0500. Epub 2015 Mar 18.
10
Protective mechanisms of mitochondria and heart function in diabetes.糖尿病中线粒体的保护机制与心脏功能
Antioxid Redox Signal. 2015 Jun 10;22(17):1563-86. doi: 10.1089/ars.2014.6123. Epub 2015 Mar 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验