Aon Miguel A, Tocchetti Carlo G, Bhatt Niraj, Paolocci Nazareno, Cortassa Sonia
Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Antioxid Redox Signal. 2015 Jun 10;22(17):1563-86. doi: 10.1089/ars.2014.6123. Epub 2015 Mar 31.
The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC).
How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail.
We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems.
Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
心脏依赖线粒体持续供应ATP并维持氧化还原平衡,以正常产生力量,尤其是在工作负荷增加时。然而,在糖尿病期间,心肌能量-氧化还原平衡受到干扰,导致出现被称为糖尿病性心肌病(DC)的收缩和舒张功能障碍。
目前对这些能量和氧化还原变化如何相互交织影响DC进展仍知之甚少。葡萄糖和脂肪酸(FAs)的生物利用度过高起着核心作用,除其他影响外,还会导致线粒体功能障碍。然而,这种营养过剩在何处以及如何影响线粒体和细胞质的能量/氧化还原交叉点仍有待更详细地确定。
我们综述了高糖如何改变细胞氧化还原平衡并影响线粒体DNA。接下来,我们探讨了无论是储存在脂滴中还是被线粒体利用的脂质过量,如何通过影响心脏能量和氧化还原状态来影响糖尿病心脏的功能。最后,我们研究了线粒体和细胞质区室之间相互的能量/氧化还原影响如何在DC过程中塑造心肌机械活动,尤其关注谷胱甘肽和硫氧还蛋白系统。
保护线粒体不丧失产生能量的能力,并控制其自身活性氧的释放,对于预防DC的发生和/或减缓其进展至关重要。我们强调了糖尿病心脏为抵消葡萄糖/脂肪酸过剩引起的损伤而采取的机制,如脂质储存、增强的线粒体-脂滴相互作用以及关键抗氧化酶的上调。更多地了解保护线粒体功能的机制的性质和位置,肯定有助于进一步优化人类DC的治疗方法。