Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
Nat Commun. 2018 Mar 21;9(1):1168. doi: 10.1038/s41467-018-03442-2.
The recently discovered Fe/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans stereoselectively catalyzes a multistep synthesis of quinolone alkaloids, natural products with significant biomedical applications. To probe molecular mechanisms of this elusive catalytic process, we combine here multi-scale quantum and classical molecular simulations with X-ray crystallography, and in vitro biochemical activity studies. We discover that methylation of the substrate is essential for the activity of AsqJ, establishing molecular strain that fine-tunes π-stacking interactions within the active site. To rationally engineer AsqJ for modified substrates, we amplify dispersive interactions within the active site. We demonstrate that the engineered enzyme has a drastically enhanced catalytic activity for non-methylated surrogates, confirming our computational data and resolved high-resolution X-ray structures at 1.55 Å resolution. Our combined findings provide crucial mechanistic understanding of the function of AsqJ and showcase how combination of computational and experimental data enables to rationally engineer enzymes.
最近在 Aspergillus nidulans 中发现的 Fe/α-酮戊二酸依赖性双氧酶 AsqJ 能够立体选择性地催化喹诺酮生物碱的多步合成,这是一类具有重要生物医学应用的天然产物。为了探究这一难以捉摸的催化过程的分子机制,我们在这里将多尺度量子和经典分子模拟与 X 射线晶体学和体外生化活性研究相结合。我们发现,底物的甲基化对于 AsqJ 的活性至关重要,这建立了分子应变,微调了活性位点内的π-堆积相互作用。为了对 AsqJ 进行修饰底物的理性工程改造,我们在活性位点内放大了分散相互作用。我们证明,经过工程改造的酶对非甲基化的替代物具有大大增强的催化活性,证实了我们的计算数据和分辨率为 1.55Å 的高分辨率 X 射线结构。我们的综合研究结果为 AsqJ 的功能提供了至关重要的机制理解,并展示了如何结合计算和实验数据来理性地工程改造酶。