Edenharter Oliver, Clement Janik, Schneuwly Stephan, Navarro Juan A
a Institute of Zoology , University of Regensburg , Regensburg , Germany.
J Neurogenet. 2017 Dec;31(4):189-202. doi: 10.1080/01677063.2017.1363200. Epub 2017 Aug 24.
Friedreich ataxia (FRDA) is the most important autosomal recessive ataxia in the Caucasian population. FRDA patients display severe neurological and cardiac symptoms that reflect a strong cellular and axonal degeneration. FRDA is caused by a loss of function of the mitochondrial protein frataxin which impairs the biosynthesis of iron-sulfur clusters and in turn the catalytic activity of several enzymes in the Krebs cycle and the respiratory chain leading to a diminished energy production. Although FRDA is due to frataxin depletion, overexpression might also be very helpful to better understand cellular functions of frataxin. In this work, we have increased frataxin expression in neurons to elucidate specific roles that frataxin might play in these tissues. Using molecular, biochemical, histological and behavioral methods, we report that frataxin overexpression is sufficient to increase oxidative phosphorylation, modify mitochondrial morphology, alter iron homeostasis and trigger oxidative stress-dependent cell death. Interestingly, genetic manipulation of mitochondrial iron metabolism by silencing mitoferrin successfully improves cell survival under oxidative-attack conditions, although enhancing antioxidant defenses or mitochondrial fusion failed to ameliorate frataxin overexpression phenotypes. This result suggests that cell degeneration is directly related to enhanced incorporation of iron into the mitochondria. Drosophila frataxin overexpression might also provide an alternative approach to identify processes that are important in FRDA such as changes in mitochondrial morphology and oxidative stress induced cell death.
弗里德赖希共济失调(FRDA)是白种人群中最重要的常染色体隐性共济失调。FRDA患者表现出严重的神经和心脏症状,反映出强烈的细胞和轴突变性。FRDA是由线粒体蛋白酵母氨酸氧化酶功能丧失引起的,这会损害铁硫簇的生物合成,进而影响三羧酸循环和呼吸链中几种酶的催化活性,导致能量产生减少。尽管FRDA是由于酵母氨酸氧化酶缺乏所致,但过表达对于更好地理解酵母氨酸氧化酶的细胞功能可能也非常有帮助。在这项研究中,我们提高了神经元中酵母氨酸氧化酶的表达,以阐明酵母氨酸氧化酶在这些组织中可能发挥的特定作用。通过分子、生化、组织学和行为学方法,我们报告酵母氨酸氧化酶过表达足以增加氧化磷酸化、改变线粒体形态、改变铁稳态并引发氧化应激依赖性细胞死亡。有趣的是,通过沉默线粒体铁转运蛋白对线粒体铁代谢进行基因操作,在氧化攻击条件下成功提高了细胞存活率,尽管增强抗氧化防御或线粒体融合未能改善酵母氨酸氧化酶过表达的表型。这一结果表明细胞变性与铁向线粒体中掺入增加直接相关。果蝇酵母氨酸氧化酶过表达也可能提供一种替代方法,来识别在FRDA中重要的过程,如线粒体形态变化和氧化应激诱导的细胞死亡。