Suppr超能文献

脂质组成决定了高密度脂蛋白重构体的血清稳定性:对体内应用的影响。

Lipid composition dictates serum stability of reconstituted high-density lipoproteins: implications for in vivo applications.

机构信息

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

University of California-Davis (UC Davis) and UC Davis Comprehensive Cancer Center, Sacramento, California 95817, USA.

出版信息

Nanoscale. 2018 Apr 26;10(16):7420-7430. doi: 10.1039/C7NR09690A.

Abstract

Nanolipoprotein particles (NLPs) are reconstituted high-density lipoproteins, consisting of a phospholipid bilayer stabilized by an apolipoprotein scaffold protein. This class of nanoparticle has been a vital tool in the study of membrane proteins, and in recent years has been increasingly used for in vivo applications. Previous work demonstrated that the composition of the lipid bilayer component affects the stability of these particles in serum solutions. In the current study, NLPs assembled with phosphatidylcholine lipids featuring different acyl chain structures were systematically tested to understand the effect that lipid composition has on NLP stability in both neat serum and cell culture media supplemented with 10% serum by volume. The time at which 50% of the particles dissociate, as well as the fraction of the initial population that remains resistant to dissociation, were correlated to key parameters obtained from all-atom simulations of the corresponding lipid bilayers. A significant correlation was observed between the compressibility modulus of the lipid bilayer and particle stability in these complex biological milieu. These results can be used as a reference to tune the stability of these versatile biological nanoparticles for in vitro and in vivo applications.

摘要

纳米脂蛋白颗粒(NLPs)是再构成的高密度脂蛋白,由载脂蛋白支架蛋白稳定的磷脂双层组成。这类纳米颗粒是研究膜蛋白的重要工具,近年来越来越多地应用于体内应用。先前的工作表明,脂质双层成分的组成会影响这些颗粒在血清溶液中的稳定性。在本研究中,我们系统地测试了用具有不同酰基链结构的磷脂酰胆碱脂质组装的 NLPs,以了解脂质组成对纯血清和体积分数为 10%的血清补充的细胞培养基中 NLPs 稳定性的影响。50%的颗粒解离的时间以及初始群体中仍能抵抗解离的部分与相应脂质双层的全原子模拟获得的关键参数相关。在这些复杂的生物环境中,脂质双层的压缩模量与颗粒稳定性之间存在显著相关性。这些结果可用于参考,以调整这些多功能生物纳米颗粒在体外和体内应用中的稳定性。

相似文献

3
Cationic HDL mimetics enhance in vivo delivery of self-replicating mRNA.
Nanomedicine. 2020 Feb;24:102154. doi: 10.1016/j.nano.2020.102154. Epub 2020 Jan 24.
4
Lipid and Protein Transfer between Nanolipoprotein Particles and Supported Lipid Bilayers.
Langmuir. 2019 Sep 17;35(37):12071-12078. doi: 10.1021/acs.langmuir.9b01288. Epub 2019 Sep 6.
5
Kinetics of lipid mixing between bicelles and nanolipoprotein particles.
Biophys Chem. 2015 Feb;197:47-52. doi: 10.1016/j.bpc.2015.01.006. Epub 2015 Jan 23.
6
Lipid Cross-Linking of Nanolipoprotein Particles Substantially Enhances Serum Stability and Cellular Uptake.
ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20549-57. doi: 10.1021/acsami.6b04609. Epub 2016 Aug 4.
7
Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks.
Biophys J. 1997 Nov;73(5):2337-46. doi: 10.1016/S0006-3495(97)78264-X.
9
Integral membrane protein fragment recombination after transfer from nanolipoprotein particles to bicelles.
Biochemistry. 2013 Dec 31;52(52):9405-12. doi: 10.1021/bi401391c. Epub 2013 Dec 18.

引用本文的文献

1
Nanolipoprotein particles for co-delivery of cystine-knot peptides and Fab-based therapeutics.
Nanoscale Adv. 2021 Jun 1;3(13):3929-3941. doi: 10.1039/d1na00218j. eCollection 2021 Jun 30.
2
HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases.
Cells. 2021 Apr 29;10(5):1061. doi: 10.3390/cells10051061.
4
Advances in HDL: Much More than Lipid Transporters.
Int J Mol Sci. 2020 Jan 22;21(3):732. doi: 10.3390/ijms21030732.

本文引用的文献

2
HDL structure and function is profoundly affected when stored frozen in the absence of cryoprotectants.
J Lipid Res. 2017 Nov;58(11):2220-2228. doi: 10.1194/jlr.D075366. Epub 2017 Sep 11.
3
The nanoparticle protein corona formed in human blood or human blood fractions.
PLoS One. 2017 Apr 17;12(4):e0175871. doi: 10.1371/journal.pone.0175871. eCollection 2017.
4
Enhancement of antigen-specific CD4 and CD8 T cell responses using a self-assembled biologic nanolipoprotein particle vaccine.
Vaccine. 2017 Mar 13;35(11):1475-1481. doi: 10.1016/j.vaccine.2017.02.004. Epub 2017 Feb 14.
5
Nanodiscs in Membrane Biochemistry and Biophysics.
Chem Rev. 2017 Mar 22;117(6):4669-4713. doi: 10.1021/acs.chemrev.6b00690. Epub 2017 Feb 8.
6
Lipid Cross-Linking of Nanolipoprotein Particles Substantially Enhances Serum Stability and Cellular Uptake.
ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20549-57. doi: 10.1021/acsami.6b04609. Epub 2016 Aug 4.
8
CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.
J Chem Theory Comput. 2016 Jan 12;12(1):405-13. doi: 10.1021/acs.jctc.5b00935. Epub 2015 Dec 3.
9
The nanoparticle biomolecule corona: lessons learned - challenge accepted?
Chem Soc Rev. 2015 Oct 7;44(17):6094-121. doi: 10.1039/c5cs00217f. Epub 2015 Jun 11.
10
Learning from biology: synthetic lipoproteins for drug delivery.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 May-Jun;7(3):298-314. doi: 10.1002/wnan.1308. Epub 2014 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验