Suppr超能文献

利用热疗法战胜癌症的适应性防御策略:研究癌症的治疗抗性、消融和计算建模策略,作为改善治疗效果的一种手段。

Defeating Cancers' Adaptive Defensive Strategies Using Thermal Therapies: Examining Cancer's Therapeutic Resistance, Ablative, and Computational Modeling Strategies as a means for Improving Therapeutic Outcome.

作者信息

Baust John M, Rabin Yoed, Polascik Thomas J, Santucci Kimberly L, Snyder Kristi K, Van Buskirk Robert G, Baust John G

机构信息

1 CPSI Biotech, Owego, NY, USA.

2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA.

出版信息

Technol Cancer Res Treat. 2018 Jan 1;17:1533033818762207. doi: 10.1177/1533033818762207.

Abstract

BACKGROUND

Diverse thermal ablative therapies are currently in use for the treatment of cancer. Commonly applied with the intent to cure, these ablative therapies are providing promising success rates similar to and often exceeding "gold standard" approaches. Cancer-curing prospects may be enhanced by deeper understanding of thermal effects on cancer cells and the hosting tissue, including the molecular mechanisms of cancer cell mutations, which enable resistance to therapy. Furthermore, thermal ablative therapies may benefit from recent developments in computer hardware and computation tools for planning, monitoring, visualization, and education.

METHODS

Recent discoveries in cancer cell resistance to destruction by apoptosis, autophagy, and necrosis are now providing an understanding of the strategies used by cancer cells to avoid destruction by immunologic surveillance. Further, these discoveries are now providing insight into the success of the diverse types of ablative therapies utilized in the clinical arena today and into how they directly and indirectly overcome many of the cancers' defensive strategies. Additionally, the manner in which minimally invasive thermal therapy is enabled by imaging, which facilitates anatomical features reconstruction, insertion guidance of thermal probes, and strategic placement of thermal sensors, plays a critical role in the delivery of effective ablative treatment.

RESULTS

The thermal techniques discussed include radiofrequency, microwave, high-intensity focused ultrasound, laser, and cryosurgery. Also discussed is the development of thermal adjunctive therapies-the combination of drug and thermal treatments-which provide new and more effective combinatorial physical and molecular-based approaches for treating various cancers. Finally, advanced computational and planning tools are also discussed.

CONCLUSION

This review lays out the various molecular adaptive mechanisms-the hallmarks of cancer-responsible for therapeutic resistance, on one hand, and how various ablative therapies, including both heating- and freezing-based strategies, overcome many of cancer's defenses, on the other hand, thereby enhancing the potential for curative approaches for various cancers.

摘要

背景

目前多种热消融疗法用于癌症治疗。这些消融疗法通常旨在治愈疾病,其成功率令人鼓舞,与“金标准”方法相当,且常常超过后者。深入了解热对癌细胞及宿主组织的影响,包括癌细胞突变的分子机制(这些机制使癌细胞产生抗药性),可能会提高癌症治愈的前景。此外,热消融疗法可能受益于计算机硬件及计算工具在治疗规划、监测、可视化及培训方面的最新进展。

方法

近期关于癌细胞对凋亡、自噬和坏死破坏产生抗性的发现,使人们了解了癌细胞用于逃避免疫监视破坏的策略。此外,这些发现还让人们深入了解了当今临床领域使用的各种消融疗法的成功之处,以及它们如何直接和间接克服癌症的许多防御策略。另外,成像技术在微创热疗中发挥着关键作用,它有助于重建解剖结构、引导热探针插入以及战略性放置热传感器,从而实现有效的消融治疗。

结果

所讨论的热技术包括射频、微波、高强度聚焦超声、激光和冷冻手术。还讨论了热辅助疗法的发展——药物与热疗相结合——为治疗各种癌症提供了新的、更有效的基于物理和分子的联合方法。最后,还讨论了先进的计算和规划工具。

结论

本综述一方面阐述了导致治疗抗性的各种分子适应性机制——癌症的标志,另一方面阐述了各种消融疗法,包括基于加热和冷冻的策略,如何克服癌症的许多防御机制,从而提高各种癌症治愈方法的潜力。

相似文献

2
Endoscopic Ultrasound-Guided Ablation of Liver Tumors.
Gastrointest Endosc Clin N Am. 2019 Apr;29(2):369-379. doi: 10.1016/j.giec.2018.11.007. Epub 2019 Feb 2.
3
Locally ablative therapies for primary and metastatic liver cancer.
Expert Rev Anticancer Ther. 2014 Aug;14(8):931-45. doi: 10.1586/14737140.2014.911091. Epub 2014 Apr 19.
4
Magnetic Resonance-Guided Thermal Therapy for Localized and Recurrent Prostate Cancer.
Magn Reson Imaging Clin N Am. 2015 Nov;23(4):607-19. doi: 10.1016/j.mric.2015.05.014. Epub 2015 Aug 5.
6
Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment.
Tumour Biol. 2015 Dec;36(12):9137-46. doi: 10.1007/s13277-015-4126-3. Epub 2015 Sep 30.
7
Ablation energies for focal treatment of prostate cancer.
World J Urol. 2019 Mar;37(3):409-418. doi: 10.1007/s00345-018-2364-x. Epub 2018 Jun 25.
8
Ablative Therapies for Breast Cancer: State of Art.
Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231157193. doi: 10.1177/15330338231157193.
9
Ablative approaches to the minimally invasive treatment of breast cancer.
Cancer J. 2005 Jan-Feb;11(1):77-82. doi: 10.1097/00130404-200501000-00012.
10
Energy ablative techniques for treatment of small renal tumors.
Curr Opin Urol. 2006 Sep;16(5):321-6. doi: 10.1097/01.mou.0000240302.11379.5b.

引用本文的文献

1
A comparative analysis of the clinical effect of multiple treatments for benign breast tumors.
J Int Med Res. 2025 Aug;53(8):3000605251367623. doi: 10.1177/03000605251367623. Epub 2025 Aug 25.
2
Using the Tissue Impulse Response Function to Streamline Fractionated MRgFUS-Induced Hyperthermia.
Cancers (Basel). 2025 Feb 4;17(3):515. doi: 10.3390/cancers17030515.
4
The Assessment of a Novel Endoscopic Ultrasound-Compatible Cryocatheter to Ablate Pancreatic Cancer.
Biomedicines. 2024 Feb 23;12(3):507. doi: 10.3390/biomedicines12030507.
7
Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions.
Comput Math Methods Med. 2021 Oct 31;2021:9025470. doi: 10.1155/2021/9025470. eCollection 2021.

本文引用的文献

1
Interactive Prostate Shape Reconstruction from 3D TRUS Images.
J Comput Des Eng. 2014 Oct;1(4):272-288. doi: 10.7315/JCDE.2014.027. Epub 2014 Dec 18.
2
Computerized Planning of Prostate Cryosurgery and Shape Considerations.
Technol Cancer Res Treat. 2017 Dec;16(6):1272-1283. doi: 10.1177/1533034617716041. Epub 2017 Jul 21.
3
A Computerized Tutor Prototype for Prostate Cryotherapy: Key Building Blocks and System Evaluation.
Proc SPIE Int Soc Opt Eng. 2017 Jan 28;10066. doi: 10.1117/12.2257151. Epub 2017 Feb 22.
4
GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training.
Technol Cancer Res Treat. 2017 Feb;16(1):5-14. doi: 10.1177/1533034615623062. Epub 2016 Jun 23.
5
A new method for temperature-field reconstruction during ultrasound-monitored cryosurgery using potential-field analogy.
Cryobiology. 2016 Feb;72(1):69-77. doi: 10.1016/j.cryobiol.2015.10.153. Epub 2015 Nov 14.
6
Simulation-Based Cryosurgery Training: Variable Insertion Depth Planning in Prostate Cryosurgery.
Technol Cancer Res Treat. 2016 Dec;15(6):805-814. doi: 10.1177/1533034615611509. Epub 2015 Nov 6.
7
Simulation-Based Cryosurgery Intelligent Tutoring System Prototype.
Technol Cancer Res Treat. 2016 Apr;15(2):396-407. doi: 10.1177/1533034615583187. Epub 2015 May 3.
8
Graphics Processing Unit-Based Bioheat Simulation to Facilitate Rapid Decision Making Associated with Cryosurgery Training.
Technol Cancer Res Treat. 2016 Apr;15(2):377-86. doi: 10.1177/1533034615580694. Epub 2015 May 3.
9
Re-purposing cryoablation: a combinatorial 'therapy' for the destruction of tissue.
Prostate Cancer Prostatic Dis. 2015 Jun;18(2):87-95. doi: 10.1038/pcan.2014.54. Epub 2015 Jan 27.
10
Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells.
Ann Biomed Eng. 2014 Dec;42(12):2392-404. doi: 10.1007/s10439-014-1100-y. Epub 2014 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验