Suppr超能文献

对抗式阈神经网络计算机在分子从头设计中的应用

Adversarial Threshold Neural Computer for Molecular de Novo Design.

机构信息

Pharma.AI Department , Insilico Medicine, Inc. , Baltimore , Maryland 21218 , United States.

Computer Technologies Lab , ITMO University , St. Petersburg 197101 , Russia.

出版信息

Mol Pharm. 2018 Oct 1;15(10):4386-4397. doi: 10.1021/acs.molpharmaceut.7b01137. Epub 2018 Mar 30.

Abstract

In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network architecture and reinforcement learning. ATNC uses a Differentiable Neural Computer as a generator and has a new specific block, called adversarial threshold (AT). AT acts as a filter between the agent (generator) and the environment (discriminator + objective reward functions). Furthermore, to generate more diverse molecules we introduce a new objective reward function named Internal Diversity Clustering (IDC). In this work, ATNC is tested and compared with the ORGANIC model. Both models were trained on the SMILES string representation of the molecules, using four objective functions (internal similarity, Muegge druglikeness filter, presence or absence of sp-rich fragments, and IDC). The SMILES representations of 15K druglike molecules from the ChemDiv collection were used as a training data set. For the different functions, ATNC outperforms ORGANIC. Combined with the IDC, ATNC generates 72% of valid and 77% of unique SMILES strings, while ORGANIC generates only 7% of valid and 86% of unique SMILES strings. For each set of molecules generated by ATNC and ORGANIC, we analyzed distributions of four molecular descriptors (number of atoms, molecular weight, logP, and tpsa) and calculated five chemical statistical features (internal diversity, number of unique heterocycles, number of clusters, number of singletons, and number of compounds that have not been passed through medicinal chemistry filters). Analysis of key molecular descriptors and chemical statistical features demonstrated that the molecules generated by ATNC elicited better druglikeness properties. We also performed in vitro validation of the molecules generated by ATNC; results indicated that ATNC is an effective method for producing hit compounds.

摘要

在本文中,我们提出了深度神经网络对抗阈值神经计算机(ATNC)。ATNC 模型旨在从头设计新型小分子有机结构。该模型基于生成对抗网络架构和强化学习。ATNC 使用可微分神经计算机作为生成器,并具有一个新的特定块,称为对抗阈值(AT)。AT 充当代理(生成器)和环境(鉴别器+目标奖励函数)之间的过滤器。此外,为了生成更多样化的分子,我们引入了一个新的目标奖励函数,称为内部多样性聚类(IDC)。在这项工作中,ATNC 与 ORGANIC 模型进行了测试和比较。两个模型都使用四个目标函数(内部相似性、Muegge druglikeness 过滤器、富电子片段的存在或缺失以及 IDC)对分子的 SMILES 字符串表示进行训练。ChemDiv 收集的 15K 个药物样分子的 SMILES 表示用作训练数据集。对于不同的功能,ATNC 优于 ORGANIC。与 IDC 结合,ATNC 生成 72%有效的和 77%独特的 SMILES 字符串,而 ORGANIC 仅生成 7%有效的和 86%独特的 SMILES 字符串。对于 ATNC 和 ORGANIC 生成的每一组分子,我们分析了四个分子描述符(原子数、分子量、logP 和 tpsa)的分布,并计算了五个化学统计特征(内部多样性、独特杂环数、簇数、单峰数和未通过药物化学过滤的化合物数)。对关键分子描述符和化学统计特征的分析表明,ATNC 生成的分子具有更好的药物特性。我们还对 ATNC 生成的分子进行了体外验证;结果表明,ATNC 是一种产生命中化合物的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验