Suppr超能文献

匿名化与共享医学文本记录

Anonymizing and Sharing Medical Text Records.

作者信息

Li Xiao-Bai, Qin Jialun

机构信息

Department of Operations and Information Systems, Manning School of Business, University of Massachusetts Lowell, Lowell, Massachusetts 01854.

出版信息

Inf Syst Res. 2017;28(2):332-352. doi: 10.1287/isre.2016.0676. Epub 2017 Apr 12.

Abstract

Health information technology has increased accessibility of health and medical data and benefited medical research and healthcare management. However, there are rising concerns about patient privacy in sharing medical and healthcare data. A large amount of these data are in free text form. Existing techniques for privacy-preserving data sharing deal largely with structured data. Current privacy approaches for medical text data focus on detection and removal of patient identifiers from the data, which may be inadequate for protecting privacy or preserving data quality. We propose a new systematic approach to extract, cluster, and anonymize medical text records. Our approach integrates methods developed in both data privacy and health informatics fields. The key novel elements of our approach include a recursive partitioning method to cluster medical text records based on the similarity of the health and medical information and a value-enumeration method to anonymize potentially identifying information in the text data. An experimental study is conducted using real-world medical documents. The results of the experiments demonstrate the effectiveness of the proposed approach.

摘要

健康信息技术提高了健康和医疗数据的可获取性,对医学研究和医疗保健管理有益。然而,在共享医疗和保健数据时,患者隐私问题日益受到关注。这些数据中有大量是自由文本形式。现有的隐私保护数据共享技术主要处理结构化数据。当前针对医学文本数据的隐私方法主要集中于从数据中检测和去除患者标识符,这对于保护隐私或保持数据质量可能并不足够。我们提出一种新的系统方法来提取、聚类和匿名化医学文本记录。我们的方法整合了数据隐私和健康信息学领域开发的方法。我们方法的关键新颖元素包括一种基于健康和医学信息的相似性对医学文本记录进行聚类的递归划分方法,以及一种对文本数据中潜在的识别信息进行匿名化的数值枚举方法。使用真实世界的医学文档进行了一项实验研究。实验结果证明了所提方法的有效性。

相似文献

1
Anonymizing and Sharing Medical Text Records.匿名化与共享医学文本记录
Inf Syst Res. 2017;28(2):332-352. doi: 10.1287/isre.2016.0676. Epub 2017 Apr 12.
2
Utility-preserving anonymization for health data publishing.用于健康数据发布的效用保持匿名化
BMC Med Inform Decis Mak. 2017 Jul 11;17(1):104. doi: 10.1186/s12911-017-0499-0.
7
Enabling Health Data Sharing with Fine-Grained Privacy.实现具有细粒度隐私的健康数据共享。
Proc ACM Int Conf Inf Knowl Manag. 2023 Oct;2023:131-141. doi: 10.1145/3583780.3614864. Epub 2023 Oct 21.

本文引用的文献

3
Strategies for maintaining patient privacy in i2b2.在 i2b2 中维护患者隐私的策略。
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i103-8. doi: 10.1136/amiajnl-2011-000316. Epub 2011 Oct 7.
9
Rapidly retargetable approaches to de-identification in medical records.医疗记录中快速可重新定位的去识别方法。
J Am Med Inform Assoc. 2007 Sep-Oct;14(5):564-73. doi: 10.1197/jamia.M2435. Epub 2007 Jun 28.
10
Evaluating the state-of-the-art in automatic de-identification.评估自动去识别技术的最新进展。
J Am Med Inform Assoc. 2007 Sep-Oct;14(5):550-63. doi: 10.1197/jamia.M2444. Epub 2007 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验