ICFO - Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels Barcelona , Spain.
ICREA - Institució Catalana de Recerca i Estudis Avançats , 08010 Barcelona , Spain.
Nano Lett. 2018 Apr 11;18(4):2538-2544. doi: 10.1021/acs.nanolett.8b00239. Epub 2018 Mar 29.
Cavity quantum electrodynamics is the art of enhancing light-matter interaction of photon emitters in cavities with opportunities for sensing, quantum information, and energy capture technologies. To boost emitter-cavity interaction, that is, coupling strength g, ultrahigh quality cavities have been concocted yielding photon trapping times of microsecondsy to milliseconds. However, such high- Q cavities give poor photon output, hindering applications. To preserve high photon output, it is advantageous to strive for highly localized electric fields in radiatively lossy cavities. Nanophotonic antennas are ideal candidates combining low- Q factors with deeply localized mode volumes, allowing large g, provided the emitter is positioned exactly right inside the nanoscale mode volume. Here, with nanometer resolution, we map and tune the coupling strength between a dipole nanoantenna-cavity and a single molecule, obtaining a coupling rate of g ∼ 200 GHz. Together with accelerated single photon output, this provides ideal conditions for fast and pure nonclassical single photon emission with brightness exceeding 10 photons/sec. Clearly, nanoantennas acting as "bad" cavities offer an optimal regime for strong coupling g to deliver bright on-demand and ultrafast single photon nanosources for quantum technologies.
腔量子电动力学是一门艺术,旨在增强光子发射器在腔中的光物质相互作用,为传感、量子信息和能量捕获技术提供机会。为了增强发射器-腔相互作用,即耦合强度 g,可以设计超高品质的腔,从而产生微秒到毫秒级的光子俘获时间。然而,这种高 Q 腔的光子输出较差,限制了其应用。为了保持高光子输出,在辐射损耗腔中追求高度局域化的电场是有利的。纳米光子学天线是理想的候选者,它结合了低 Q 因子和深局域模式体积,允许大的 g,前提是发射器正好位于纳米级模式体积内。在这里,我们以纳米分辨率绘制和调整偶极纳米天线-腔与单个分子之间的耦合强度,获得了 g∼200GHz 的耦合速率。加上加速的单光子输出,这为具有超过 10 个光子/秒的亮度的快速和纯非经典单光子发射提供了理想的条件。显然,作为“不良”腔的纳米天线提供了一个优化的强耦合 g regime,用于按需提供明亮的超快单光子纳米光源,用于量子技术。