Suppr超能文献

Sucrose-dependent cell adherence and cariogenicity of serotype c Streptococcus mutans.

作者信息

Koga T, Asakawa H, Okahashi N, Hamada S

出版信息

J Gen Microbiol. 1986 Oct;132(10):2873-83. doi: 10.1099/00221287-132-10-2873.

Abstract

Four strains of serotype c Streptococcus mutans differing in glucosyltransferase (GTase) and fructosyltransferase (FTase) activities were examined. These strains had been made resistant to streptomycin. FTase activity of an S. mutans clinical variant, MT6801R, which forms large mucoid colonies on sucrose-containing agar, was considerably higher than that of a typical serotype c strain, MT8148R, which forms small, rough colonies on the same agar. Two mutants, NG14 and NG7183, were induced from strain MT6801R by N-methyl-N'-nitro-N-nitrosoguanidine, and were found to be streptomycin-resistant. GTase and FTase activities of mutant NG14 were similar to those of the typical serotype c strain, while in mutant NG7183 the two enzyme activities were very low. Growing cells of these strains (except NG7183) adhered firmly to a glass surface in sucrose broth. Resting cells of all strains attached in small numbers to saliva-coated hydroxyapatite in the absence of sucrose. On the other hand, the presence of sucrose markedly enhanced the attachment of cells of strains MT8148R, MT6801R and NG14, but not NG7183. Cell-surface hydrophobicity and acid production of all strains were similar. Both strain MT8148R and NG14 colonized tooth surfaces and produced significant dental caries in specific-pathogen-free rats. Strain MT6801R had lower colonization ability and cariogenicity when compared with strains MT8148R and NG14. Furthermore, mutant NG7183 was able to colonize the tooth surfaces in small numbers, but failed to cause dental caries. These results indicate that sucrose-dependent cell adherence mediated by de novo glucan synthesis is necessary for the accumulation of serotype c S. mutans cells on the tooth surface and the induction of dental caries.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验