Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada.
University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
J Physiol. 2018 Jun;596(12):2359-2379. doi: 10.1113/JP275388. Epub 2018 May 5.
Ex vivo proliferated c-Kit endogenous cardiac progenitor cells (eCPCs) obtained from mouse and human cardiac tissues have been reported to express a wide range of functional ion channels. In contrast to previous reports in cultured c-Kit eCPCs, we found that ion currents were minimal in freshly isolated cells. However, inclusion of free Ca intracellularly revealed a prominent inwardly rectifying current identified as the intermediate conductance Ca -activated K current (KCa3.1) Electrical function of both c-Kit eCPCs and bone marrow-derived mesenchymal stem cells is critically governed by KCa3.1 calcium-dependent potassium channels. Ca -induced increases in KCa3.1 conductance are necessary to optimize membrane potential during Ca entry. Membrane hyperpolarization due to KCa3.1 activation maintains the driving force for Ca entry that activates stem cell proliferation. Cardiac disease downregulates KCa3.1 channels in resident cardiac progenitor cells. Alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine.
Endogenous c-Kit cardiac progenitor cells (eCPCs) and bone marrow (BM)-derived mesenchymal stem cells (MSCs) are being developed for cardiac regenerative therapy, but a better understanding of their physiology is needed. Here, we addressed the unknown functional role of ion channels in freshly isolated eCPCs and expanded BM-MSCs using patch-clamp, microfluorometry and confocal microscopy. Isolated c-Kit eCPCs were purified from dog hearts by immunomagnetic selection. Ion currents were barely detectable in freshly isolated c-Kit eCPCs with buffering of intracellular calcium (Ca ). Under conditions allowing free intracellular Ca , freshly isolated c-Kit eCPCs and ex vivo proliferated BM-MSCs showed prominent voltage-independent conductances that were sensitive to intermediate-conductance K -channel (KCa3.1 current, I ) blockers and corresponding gene (KCNN4)-expression knockdown. Depletion of Ca induced membrane-potential (V ) depolarization, while store-operated Ca entry (SOCE) hyperpolarized V in both cell types. The hyperpolarizing SOCE effect was substantially reduced by I or SOCE blockade (TRAM-34, 2-APB), and I blockade (TRAM-34) or KCNN4-knockdown decreased the Ca entry resulting from SOCE. I suppression reduced c-Kit eCPC and BM-MSC proliferation, while significantly altering the profile of cyclin expression. I was reduced in c-Kit eCPCs isolated from dogs with congestive heart failure (CHF), along with corresponding KCNN4 mRNA. Under perforated-patch conditions to maintain physiological [Ca ] , c-Kit eCPCs from CHF dogs had less negative resting membrane potentials (-58 ± 7 mV) versus c-Kit eCPCs from control dogs (-73 ± 3 mV, P < 0.05), along with slower proliferation. Our study suggests that Ca -induced increases in I are necessary to optimize membrane potential during the Ca entry that activates progenitor cell proliferation, and that alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine.
从鼠和人心肌组织中获得的体外增殖的 c-Kit 内源性心脏祖细胞(eCPCs)已被报道表达广泛的功能性离子通道。与先前在培养的 c-Kit eCPCs 中的报告相反,我们发现新鲜分离的细胞中离子电流极小。然而,包括细胞内游离 Ca 在内,揭示了一种明显的内向整流电流,鉴定为中介电导 Ca 激活的 K 电流(KCa3.1)。c-Kit eCPCs 和骨髓来源的间充质干细胞的电功能均受到 KCa3.1 钙依赖性钾通道的严格控制。Ca 诱导的 KCa3.1 电导增加对于优化 Ca 进入期间的膜电位是必需的。由于 KCa3.1 激活引起的膜超极化维持了激活干细胞增殖的 Ca 进入的驱动力。心脏疾病下调驻留心脏祖细胞中的 KCa3.1 通道。KCa3.1 的改变在再生医学中可能具有病理生理和治疗意义。
内源性 c-Kit 心脏祖细胞(eCPCs)和骨髓(BM)衍生的间充质干细胞(MSCs)正在开发用于心脏再生治疗,但需要更好地了解它们的生理学。在这里,我们使用膜片钳、微荧光计和共聚焦显微镜研究了离子通道在新鲜分离的 eCPCs 和扩增的 BM-MSCs 中的未知功能作用。通过免疫磁珠选择从狗心脏中纯化 c-Kit eCPCs。在缓冲细胞内 Ca 的情况下,新鲜分离的 c-Kit eCPCs 中几乎检测不到离子电流(Ca )。在允许细胞内游离 Ca 的情况下,新鲜分离的 c-Kit eCPCs 和体外增殖的 BM-MSCs 表现出对中介电导 K -通道(KCa3.1 电流,I )阻滞剂和相应基因(KCNN4)表达敲低的明显电压独立电导。Ca 耗竭诱导膜电位(V )去极化,而储存操作的 Ca 进入(SOCE)在两种细胞类型中使 V 超极化。I 或 SOCE 阻断(TRAM-34、2-APB)显著降低了这种超极化 SOCE 效应,而 I 阻断(TRAM-34)或 KCNN4 敲低降低了由 SOCE 引起的 Ca 进入。I 抑制减少了 c-Kit eCPC 和 BM-MSC 的增殖,同时显著改变了细胞周期蛋白表达谱。与对照狗的 c-Kit eCPCs(-73 ± 3 mV,P < 0.05)相比,心力衰竭(CHF)狗的 c-Kit eCPCs 中 I 减少,同时伴有相应的 KCNN4 mRNA。在保持生理 [Ca ] 的穿孔膜片钳条件下,来自 CHF 狗的 c-Kit eCPCs 的静息膜电位(-58 ± 7 mV)比来自对照狗的 c-Kit eCPCs 更负,增殖速度也较慢。我们的研究表明,Ca 诱导的 I 增加对于优化激活祖细胞增殖的 Ca 进入期间的膜电位是必需的,而 KCa3.1 的改变在再生医学中可能具有病理生理和治疗意义。