Asset Tristan, Chattot Raphaël, Fontana Marie, Mercier-Guyon Benjamin, Job Nathalie, Dubau Laetitia, Maillard Frédéric
Univ. Grenoble Alpes, CNRS, Grenoble-INP (Institute of Engineering Univ. Grenoble Alpes), Université Savoie-Mont-Blanc, LEPMI, 38000, Grenoble, France.
University of Liège, Department of Chemical Engineering - Nanomaterials, Catalysis, Electrochemistry, B6a, Sart-Tilman, B-4000, Liège, Belgium.
Chemphyschem. 2018 Jul 5;19(13):1552-1567. doi: 10.1002/cphc.201800153. Epub 2018 May 8.
Due to their interesting electrocatalytic properties for the oxygen reduction reaction (ORR), hollow Pt-alloy nanoparticles (NPs) supported on high-surface-area carbon attract growing interest. However, the suitable synthesis methods and associated mechanisms of formation, the reasons for their enhanced specific activity for the ORR, and the nature of adequate alloying elements and carbon supports for this type of nanocatalysts remain open questions. This Review aims at shedding light on these topics with a special emphasis on hollow PtNi NPs supported onto Vulcan C (PtNi/C). We first show how hollow Pt-alloy/C NPs can be synthesized by a mechanism involving galvanic replacement and the nanoscale Kirkendall effect. Nickel, cobalt, copper, zinc, and iron (Ni, Co, Cu, Zn, and Fe, respectively) were tested for the formation of Pt-alloy/C hollow nanostructures. Our results indicate that metals with standard potential -0.4<E<0.4 V (vs. the normal hydrogen electrode) and propensity to spontaneously form metal borides in the presence of sodium borohydride are adequate sacrificial templates. As they lead to smaller hollow Pt-alloy/C NPs, mesoporous carbon supports are also best suited for this type of synthesis. A comparison of the electrocatalytic activity towards the ORR or the electrooxidation of a CO monolayer, methanol or ethanol of hollow and solid Pt-alloy/C NPs underlines the pivotal role of the structural disorder of the metal lattice, and is supported by ab initio calculations. As evidenced by accelerated stress tests simulating proton-exchange membrane fuel cell cathode operating conditions, the beneficial effect of structural disorder is maintained on the long term, thereby bringing promises for the synthesis of highly active and robust ORR electrocatalysts.
由于其对氧还原反应(ORR)具有有趣的电催化性能,负载在高比表面积碳上的中空铂合金纳米颗粒(NPs)引起了越来越多的关注。然而,合适的合成方法及其相关的形成机制、它们对ORR增强的比活性的原因,以及这种类型的纳米催化剂合适的合金元素和碳载体的性质仍然是悬而未决的问题。本综述旨在阐明这些主题,特别强调负载在Vulcan C(PtNi/C)上的中空PtNi NPs。我们首先展示了如何通过涉及电化学生成和纳米级柯肯达尔效应的机制合成中空铂合金/C NPs。分别测试了镍、钴、铜、锌和铁(分别为Ni、Co、Cu、Zn和Fe)用于形成铂合金/C中空纳米结构。我们的结果表明,标准电位为-0.4<E<0.4 V(相对于标准氢电极)且在硼氢化钠存在下倾向于自发形成金属硼化物的金属是合适的牺牲模板。由于它们会导致更小的中空铂合金/C NPs,介孔碳载体也最适合这种类型的合成。中空和实心铂合金/C NPs对ORR或CO单层、甲醇或乙醇的电氧化的电催化活性的比较强调了金属晶格结构无序的关键作用,并得到了从头算计算的支持。模拟质子交换膜燃料电池阴极运行条件的加速应力测试表明,结构无序的有益效果在长期内得以保持,从而为合成高活性和稳健的ORR电催化剂带来了希望。