Suppr超能文献

光致表面改性提高硫化铅量子点太阳能电池的性能。

Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.

机构信息

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

出版信息

J Colloid Interface Sci. 2018 Jul 15;522:120-125. doi: 10.1016/j.jcis.2018.03.047. Epub 2018 Mar 15.

Abstract

The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%.

摘要

近年来,溶液处理量子点 (QD) 太阳能电池技术取得了重大进展,有望成为下一代光伏技术的有力竞争者。在高性能 QD 太阳能电池的开发中,表面配体化学在控制 QD 固体的掺杂类型和掺杂密度方面发挥了重要作用。例如,硫化铅 (PbS) QD 是 QD 太阳能电池技术的前沿,可以分别使用碘或硫醇作为表面活性剂制成 n 型或 p 型。表面配体化学的进步使得可以形成 PbS QD 层的 p-n 同质结,从而获得高太阳能电池性能。然而,这里表明,硫醇钝化的 p 型 PbS QD 空穴传输层与 n 型 PbS QD 光吸收层之间的费米能级对准不佳,使得光伏器件无法发挥其全部潜力。在这里,我们开发了一种使用简便的紫外臭氧处理的控制表面氧化技术,以可控的方式增加硫醇钝化的 PbS QD 层中的 p 型掺杂密度。这种微妙的表面修饰将空穴传输层的费米能级调深,以促进光伏器件中的载流子提取和电压产生。在光伏器件中,紫外臭氧处理导致功率转换效率平均提高了 18%,最高记录效率为 8.98%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验