Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
Department of Biomedical Engineering, City College of New York, New York, NY, 10031, USA.
Neuroimage. 2018 Jul 15;175:12-21. doi: 10.1016/j.neuroimage.2018.03.035. Epub 2018 Mar 23.
Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making.
许多现实世界中的决策都依赖于主动感知,这是一种引导我们的传感器(如眼睛或手指)在刺激物上移动以最大化信息获取的动态过程。尽管主动感知在生态上普遍存在,但很少有研究关注识别主动感知过程的神经相关性。在触觉感知中,我们通常通过主动探索物体/表面的形状/质地来做出关于物体/表面的决策。在这里,我们通过同时测量脑电图 (EEG) 和手指运动学,在受试者探索触觉表面以做出感知判断时,研究主动触觉决策的神经相关性。由于主动感知任务中的决策形成依赖于感觉运动行为,我们假设通过将主动感知与神经活动相关联,可以检测到与决策相关过程的神经相关性。新的脑-行为相关性分析表明,三个不同的 EEG 成分分别定位于右侧枕叶皮层 (LOC)、中额回 (MFG) 和辅助运动区 (SMA),与主动感知相关,因为它们的活动与手指运动学显著相关。为了探究这些成分的功能作用,我们使用层次漂移扩散模型 (HDDM) 将它们的单试耦合拟合到决策表现中,结果表明 LOC 调节了触觉刺激的编码,而 MFG 预测了信息整合到选择的速度。有趣的是,MFG 从执行主动感知但不需要做出感知决策的对照组中发现的成分中消失了。通过揭示不同的刺激编码和证据积累过程的神经相关性,本研究首次描绘了皮质区域在主动触觉决策中的功能作用。