Suppr超能文献

利用神经活动的混合编码-解码技术提取多维刺激-反应相关性。

Extracting multidimensional stimulus-response correlations using hybrid encoding-decoding of neural activity.

机构信息

Department of Biomedical Engineering, City College of New York, New York, NY 10031, United States.

Neuromatters LLC, New York, NY 10038, United States.

出版信息

Neuroimage. 2018 Oct 15;180(Pt A):134-146. doi: 10.1016/j.neuroimage.2017.05.037. Epub 2017 May 22.

Abstract

In neuroscience, stimulus-response relationships have traditionally been analyzed using either encoding or decoding models. Here we propose a hybrid approach that decomposes neural activity into multiple components, each representing a portion of the stimulus. The technique is implemented via canonical correlation analysis (CCA) by temporally filtering the stimulus (encoding) and spatially filtering the neural responses (decoding) such that the resulting components are maximally correlated. In contrast to existing methods, this approach recovers multiple correlated stimulus-response pairs, and thus affords a richer, multidimensional analysis of neural representations. We first validated the technique's ability to recover multiple stimulus-driven components using electroencephalographic (EEG) data simulated with a finite element model of the head. We then applied the technique to real EEG responses to auditory and audiovisual narratives experienced identically across subjects, as well as uniquely experienced video game play. During narratives, both auditory and visual stimulus-response correlations (SRC) were modulated by attention and tracked inter-subject correlations. During video game play, SRC varied with game difficulty and the presence of a dual task. Interestingly, the strongest component extracted for visual and auditory features of film clips had nearly identical spatial distributions, suggesting that the predominant encephalographic response to naturalistic stimuli is supramodal. The diversity of these findings demonstrates the utility of measuring multidimensional SRC via hybrid encoding-decoding.

摘要

在神经科学中,刺激-反应关系传统上使用编码或解码模型进行分析。在这里,我们提出了一种混合方法,将神经活动分解为多个分量,每个分量代表刺激的一部分。该技术通过时间滤波刺激(编码)和空间滤波神经反应(解码)来实现,从而使得到的分量最大相关。与现有方法相比,这种方法恢复了多个相关的刺激-反应对,从而为神经表示提供了更丰富、多维的分析。我们首先使用头部有限元模型模拟的脑电图 (EEG) 数据验证了该技术恢复多个刺激驱动分量的能力。然后,我们将该技术应用于听觉和视听叙事的真实 EEG 反应,这些叙事在受试者之间是相同的,以及独特的视频游戏体验。在叙事中,听觉和视觉刺激-反应相关性 (SRC) 都受到注意力的调节,并跟踪受试者间的相关性。在玩视频游戏时,SRC 随游戏难度和双重任务的存在而变化。有趣的是,从电影片段的视觉和听觉特征中提取的最强分量具有几乎相同的空间分布,这表明自然刺激的主要脑电图反应是超模态的。这些发现的多样性表明,通过混合编码-解码来测量多维 SRC 的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验