Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway.
Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4405-4410. doi: 10.1073/pnas.1719251115. Epub 2018 Mar 26.
N-terminal (Nt) acetylation is a major protein modification catalyzed by N-terminal acetyltransferases (NATs). Methionine acidic N termini, including actin, are cotranslationally Nt acetylated by NatB in all eukaryotes, but animal actins containing acidic N termini, are additionally posttranslationally Nt acetylated by NAA80. Actin Nt acetylation was found to regulate cytoskeletal dynamics and motility, thus making NAA80 a potential target for cell migration regulation. In this work, we developed potent and selective bisubstrate inhibitors for NAA80 and determined the crystal structure of NAA80 in complex with such an inhibitor, revealing that NAA80 adopts a fold similar to other NAT enzymes but with a more open substrate binding region. Furthermore, in contrast to most other NATs, the substrate specificity of NAA80 is mainly derived through interactions between the enzyme and the acidic amino acids at positions 2 and 3 of the actin substrate and not residues 1 and 2. A yeast model revealed that ectopic expression of NAA80 in a strain lacking NatB activity partially restored Nt acetylation of NatB substrates, including yeast actin. Thus, NAA80 holds intrinsic capacity to posttranslationally Nt acetylate NatB-type substrates in vivo. In sum, the presence of a dominant cotranslational NatB in all eukaryotes, the specific posttranslational actin methionine removal in animals, and finally, the unique structural features of NAA80 leave only the processed actins as in vivo substrates of NAA80. Together, this study reveals the molecular and cellular basis of NAA80 Nt acetylation and provides a scaffold for development of inhibitors for the regulation of cytoskeletal properties.
N 端(Nt)乙酰化是由 N 端乙酰转移酶(NATs)催化的主要蛋白质修饰。在所有真核生物中,包括肌动蛋白在内的 N 端带有酸性氨基酸的蛋氨酸,在翻译过程中被 NatB 进行 Nt 乙酰化,但含有酸性 N 端的动物肌动蛋白,还会被 NAA80 进行翻译后 Nt 乙酰化。肌动蛋白 Nt 乙酰化被发现可以调节细胞骨架的动态和运动,因此 NAA80 是细胞迁移调节的潜在靶点。在这项工作中,我们开发了针对 NAA80 的有效且选择性的双底物抑制剂,并确定了 NAA80 与这种抑制剂复合物的晶体结构,揭示了 NAA80 采用类似于其他 NAT 酶的折叠结构,但具有更开放的底物结合区域。此外,与大多数其他 NAT 酶不同,NAA80 的底物特异性主要通过酶与肌动蛋白底物第 2 和第 3 位酸性氨基酸之间的相互作用,而不是第 1 和第 2 位氨基酸的相互作用来决定。酵母模型显示,在缺乏 NatB 活性的菌株中异位表达 NAA80 部分恢复了 NatB 底物的 Nt 乙酰化,包括酵母肌动蛋白。因此,NAA80 具有内在的能力在体内对 NatB 型底物进行翻译后 Nt 乙酰化。总之,所有真核生物中存在优势的共翻译性 NatB、动物中特异性的翻译后肌动蛋白甲硫氨酸切除,以及 NAA80 独特的结构特征,使得只有加工后的肌动蛋白成为 NAA80 的体内底物。总之,这项研究揭示了 NAA80 Nt 乙酰化的分子和细胞基础,并为开发调节细胞骨架特性的抑制剂提供了一个支架。