Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel.
Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain.
Nat Commun. 2024 Mar 25;15(1):2638. doi: 10.1038/s41467-024-46881-w.
Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.
蛋白质-蛋白质相互作用是所有细胞过程的核心,核糖体作为一个平台,协调新生链相互作用动力学。在这里,为了研究控制共翻译蛋白质折叠和复杂组装的特征,我们将选择性核糖体分析、成像和 N 端组学与全原子分子动力学结合起来。我们专注于保守的 N 端乙酰转移酶(NATs),揭示了不同的共翻译组装途径,其中高度同源的亚基具有相反的功能。我们发现只有少数残基充当“热点”,在核糖体出口隧道暴露时引发共翻译组装相互作用。这些热点的特点是结合能高,锚定整个界面组装。含有热点的α螺旋非常不稳定,在模拟过程中折叠和展开,这取决于它们的伴侣亚基以避免错误折叠。体内热点突变破坏了共翻译复合物的形成,导致聚集。因此,保守性分析表明,导致神经发育和神经退行性疾病的错义 NATs 变体破坏了潜在的热点簇。我们将研究扩展到包括磷酸果糖激酶、邻氨基苯甲酸合酶和核孔复合体亚基,我们使用 AlphaFold-Multimer 来模拟复合物的完整结构。计算 MD 衍生的界面能量分布曲线,我们发现了类似的趋势。在这里,我们提出了一个基于界面能量分布的模型,作为共翻译组装的强预测因子。