United States Department of Agriculture, Agricultural Research Service, Peoria, Illinois, United States of America.
PLoS One. 2018 Mar 27;13(3):e0194616. doi: 10.1371/journal.pone.0194616. eCollection 2018.
The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the genomes of 60 diverse F. graminearum isolates. We also assembled the first pan-genome for F. graminearum to clarify population-level differences in gene content potentially contributing to pathogen diversity. Bayesian and phylogenomic analyses revealed genetic structure associated with isolates that produce the novel NX-2 mycotoxin, suggesting a North American population that has remained genetically distinct from other endemic and introduced cereal-infecting populations. Genome scans uncovered distinct signatures of selection within populations, focused in high diversity, frequently recombining regions. These patterns suggested selection for genomic divergence at the trichothecene toxin gene cluster and thirteen additional regions containing genes potentially involved in pathogen specialization. Gene content differences further distinguished populations, in that 121 genes showed population-specific patterns of conservation. Genes that differentiated populations had predicted functions related to pathogenesis, secondary metabolism and antagonistic interactions, though a subset had unique roles in temperature and light sensitivity. Our results indicated that F. graminearum populations are distinguished by dozens of genes with signatures of selection and an array of dispensable accessory genes, suggesting that FHB pathogen populations may be equipped with different traits to exploit the agroecosystem. These findings provide insights into the evolutionary processes and genomic features contributing to population divergence in plant pathogens, and highlight candidate genes for future functional studies of pathogen specialization across evolutionarily and ecologically diverse fungi.
谷物病原体禾谷镰刀菌是赤霉病(FHB)的主要原因,也是食品安全和作物生产的重大威胁。为了阐明北美主要 FHB 病原体群体的种群结构和选择的基因组靶标,我们对 60 个不同的禾谷镰刀菌分离株进行了基因组测序。我们还组装了第一个禾谷镰刀菌泛基因组,以阐明可能导致病原体多样性的基因内容在种群水平上的差异。贝叶斯和系统基因组分析揭示了与产生新型 NX-2 真菌毒素的分离株相关的遗传结构,表明北美种群在遗传上与其他地方性和引入性谷物感染种群保持明显不同。基因组扫描在种群内发现了选择的独特特征,集中在高多样性、频繁重组的区域。这些模式表明,在三萜类毒素基因簇和包含可能参与病原体特化的基因的十三个额外区域中,基因组的分化选择。基因内容的差异进一步区分了种群,其中 121 个基因表现出种群特异性的保守模式。区分种群的基因具有与发病机制、次生代谢和拮抗相互作用相关的预测功能,尽管其中一部分在温度和光照敏感性方面具有独特的作用。我们的研究结果表明,禾谷镰刀菌种群的特征是数十个具有选择特征的基因和一系列可选择的附加基因,这表明 FHB 病原体种群可能具有不同的特征来利用农业生态系统。这些发现为植物病原体种群分化的进化过程和基因组特征提供了深入的了解,并突出了候选基因,为未来研究进化和生态多样性真菌中病原体特化的功能提供了参考。