School of Science Engineering and Technology, Abertay University, Dundee DD1 1HG, UK.
Institute of Health Science, University of Highlands and Islands, Inverness IV2 3JH, UK.
Redox Biol. 2018 Jun;16:344-351. doi: 10.1016/j.redox.2018.03.012. Epub 2018 Mar 20.
Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP and/or MnTnBuOE-2-PyP blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS-using mitochondria-targeted Paraquat (MitoPQ)-recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP. We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features.
发育中的突触修剪完善了新兴的连接组。线粒体活性氧(ROS)产生的基本机制表明,它们选择不活跃的突触进行修剪:它们是否这样做尚不清楚。为了开始阐明线粒体 ROS 是否调节修剪,我们通过使用不同的外源性和内源性模型在发育中的非洲爪蟾蝌蚪中大规模诱导突触失活,使神经肌肉接头(NMJ)修剪的局部后果可作为运动缺陷来检测。我们解决了以下问题:(1)突触失活是否会增加线粒体 ROS;(2)化学异质的抗氧化剂是否可以挽救突触失活诱导的运动缺陷。无论使用肌肉(α-银环蛇毒素)、神经(α- latrotoxin)靶向神经毒素还是内源性修剪信号(SPARC)来实现,突触失活都会增加体内的线粒体 ROS。锰卟啉 MnTE-2-PyP 和/或 MnTnBuOE-2-PyP 阻断线粒体 ROS,显著减少神经毒素和内源性修剪信号诱导的运动缺陷。使用靶向线粒体的百草枯(MitoPQ)选择性诱导线粒体 ROS,重现了突触失活诱导的运动缺陷;用 MnTnBuOE-2-PyP 阻断线粒体 ROS 可显著减少这些运动缺陷。我们揭示了线粒体 ROS 作为突触活动的哨兵,调节 NMJ 处强制突触失活的表型后果。我们的新结果与修剪有关,因为突触失活是其定义特征之一。