Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
Ghana Health Service, P.M.B, Ministries, Accra, Greater Accra, Ghana.
Reprod Health. 2018 Mar 27;15(1):56. doi: 10.1186/s12978-018-0492-9.
We assessed whether adding the biomarkers Pregnancy Associated Plasma Protein-A (PAPP-A) and Placental Growth Factor (PlGF) to maternal clinical characteristics improved the prediction of a previously developed model for gestational hypertension in a cohort of Ghanaian pregnant women.
This study was nested in a prospective cohort of 1010 pregnant women attending antenatal clinics in two public hospitals in Accra, Ghana. Pregnant women who were normotensive, at a gestational age at recruitment of between 8 and 13 weeks and provided a blood sample for biomarker analysis were eligible for inclusion. From serum, biomarkers PAPP-A and PlGF concentrations were measured by the AutoDELFIA immunoassay method and multiple of the median (MoM) values corrected for gestational age (PAPP-A and PlGF) and maternal weight (PAPP-A) were calculated. To obtain prediction models, these biomarkers were included with clinical predictors maternal weight, height, diastolic blood pressure, a previous history of gestational hypertension, history of hypertension in parents and parity in a logistic regression to obtain prediction models. The Area Under the Receiver Operating Characteristic Curve (AUC) was used to assess the predictive ability of the models.
Three hundred and seventy three women participated in this study. The area under the curve (AUC) of the model with only maternal clinical characteristics was 0.75 (0.64-0.86) and 0.89(0.73-1.00) for multiparous and primigravid women respectively. The AUCs after inclusion of both PAPP-A and PlGF were 0.82 (0.74-0.89) and 0.95 (0.87-1.00) for multiparous and primigravid women respectively.
Adding the biomarkers PAPP-A and PlGF to maternal characteristics to a prediction model for gestational hypertension in a cohort of Ghanaian pregnant women improved predictive ability. Further research using larger sample sizes in similar settings to validate these findings is recommended.
我们评估了在加纳孕妇队列中,将生物标志物妊娠相关血浆蛋白-A(PAPP-A)和胎盘生长因子(PlGF)添加到母体临床特征中是否可以改善之前开发的妊娠高血压模型的预测能力。
这项研究嵌套在一个前瞻性队列中,该队列由 1010 名在加纳阿克拉的两家公立医院接受产前检查的孕妇组成。符合纳入标准的孕妇为血压正常、招募时的妊娠龄在 8 至 13 周之间且提供了用于生物标志物分析的血样。通过 AutoDELFIA 免疫分析法测量血清中生物标志物 PAPP-A 和 PlGF 浓度,并校正了妊娠龄(PAPP-A 和 PlGF)和母亲体重(PAPP-A)的中位数倍数(MoM)值。为了获得预测模型,将这些生物标志物与临床预测因子(母亲体重、身高、舒张压、既往妊娠高血压史、父母高血压史和产次)一起纳入逻辑回归中,以获得预测模型。使用受试者工作特征曲线下面积(AUC)评估模型的预测能力。
共有 373 名女性参与了这项研究。仅包含母体临床特征的模型的曲线下面积(AUC)分别为 0.75(0.64-0.86)和 0.89(0.73-1.00),分别用于多产妇和初产妇。纳入 PAPP-A 和 PlGF 后,多产妇和初产妇的 AUC 分别为 0.82(0.74-0.89)和 0.95(0.87-1.00)。
将生物标志物 PAPP-A 和 PlGF 添加到母体特征中,用于预测加纳孕妇队列中的妊娠高血压,可提高预测能力。建议在类似环境中使用更大的样本量进行进一步研究,以验证这些发现。