Suppr超能文献

用于超级电容器电极材料的具有超高比电容的NiMn-LDH纳米片@NiS纳米棒杂化结构的合成

Synthesis of NiMn-LDH Nanosheet@NiS Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance.

作者信息

Yu Shuai, Zhang Yingxi, Lou Gaobo, Wu Yatao, Zhu Xinqiang, Chen Hao, Shen Zhehong, Fu Shenyuan, Bao Binfu, Wu Limin

机构信息

Faculty of Engineering and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, PR China.

Collaborative Innovation Center of Novel Organic Chemical Materials of Hubei Province, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.

出版信息

Sci Rep. 2018 Mar 27;8(1):5246. doi: 10.1038/s41598-018-23642-6.

Abstract

One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@NiS nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and NiS nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g at 3 A g. Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg at 738 W Kg) and very good electrochemical cycling stability.

摘要

对于具有高效电容输出和未来实际应用的赝电容电极材料而言,关键挑战之一是如何通过简单的工艺合理构建分层有序的混合纳米结构。在此,我们通过一锅水热法设计并合成了一种新型的负载在多孔泡沫镍上的NiMn层状双氢氧化物纳米片@NiS纳米棒混合阵列。得益于混合阵列超薄且粗糙的特性、明确的多孔结构以及NiMn层状双氢氧化物纳米片与NiS纳米棒之间的协同效应,所制备的基于混合阵列的电极在3 A g时表现出2703 F g的超高比电容。此外,以这种混合阵列作为正极、木材衍生的活性炭作为负极的不对称超级电容器展现出高能量密度(在738 W Kg时为57 Wh Kg)以及非常良好的电化学循环稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff10/5869735/19458f795d0c/41598_2018_23642_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验