Mejova Yelena, Weber Ingmar, Fernandez-Luque Luis
Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
JMIR Public Health Surveill. 2018 Mar 28;4(1):e30. doi: 10.2196/publichealth.7217.
BACKGROUND: Facebook, the most popular social network with over one billion daily users, provides rich opportunities for its use in the health domain. Though much of Facebook's data are not available to outsiders, the company provides a tool for estimating the audience of Facebook advertisements, which includes aggregated information on the demographics and interests, such as weight loss or dieting, of Facebook users. This paper explores the potential uses of Facebook ad audience estimates for eHealth by studying the following: (1) for what type of health conditions prevalence estimates can be obtained via social media and (2) what type of marker interests are useful in obtaining such estimates, which can then be used for recruitment within online health interventions. OBJECTIVE: The objective of this study was to understand the limitations and capabilities of using Facebook ad audience estimates for public health monitoring and as a recruitment tool for eHealth interventions. METHODS: We use the Facebook Marketing application programming interface to correlate estimated sizes of audiences having health-related interests with public health data. Using several study cases, we identify both potential benefits and challenges in using this tool. RESULTS: We find several limitations in using Facebook ad audience estimates, for example, using placebo interest estimates to control for background level of user activity on the platform. Some Facebook interests such as plus-size clothing show encouraging levels of correlation (r=.74) across the 50 US states; however, we also sometimes find substantial correlations with the placebo interests such as r=.68 between interest in Technology and Obesity prevalence. Furthermore, we find demographic-specific peculiarities in the interests on health-related topics. CONCLUSIONS: Facebook's advertising platform provides aggregate data for more than 190 million US adults. We show how disease-specific marker interests can be used to model prevalence rates in a simple and intuitive manner. However, we also illustrate that building effective marker interests involves some trial-and-error, as many details about Facebook's black box remain opaque.
背景:脸书是最受欢迎的社交网络,每日用户超过10亿,为其在健康领域的应用提供了丰富机会。尽管脸书的许多数据外界无法获取,但该公司提供了一种估算脸书广告受众的工具,其中包括脸书用户的人口统计学和兴趣(如减肥或节食)的汇总信息。本文通过研究以下内容探讨脸书广告受众估算在电子健康领域的潜在用途:(1)通过社交媒体可获得哪些类型健康状况的患病率估算;(2)哪些类型的标记兴趣在获得此类估算时有用,这些估算随后可用于在线健康干预中的招募。 目的:本研究的目的是了解使用脸书广告受众估算进行公共卫生监测以及作为电子健康干预招募工具的局限性和能力。 方法:我们使用脸书营销应用程序编程接口,将具有健康相关兴趣的受众估算规模与公共卫生数据相关联。通过几个研究案例,我们确定了使用该工具的潜在益处和挑战。 结果:我们发现使用脸书广告受众估算存在一些局限性,例如使用安慰剂兴趣估算来控制平台上用户活动的背景水平。一些脸书兴趣,如加大码服装,在美国50个州显示出令人鼓舞的相关性水平(r = 0.74);然而,我们有时也会发现与安慰剂兴趣存在显著相关性,如科技兴趣与肥胖患病率之间的r = 0.68。此外,我们发现与健康相关主题的兴趣存在特定人群的特殊性。 结论:脸书广告平台为超过1.9亿美国成年人提供汇总数据。我们展示了如何使用特定疾病的标记兴趣以简单直观的方式对患病率进行建模。然而,我们也说明构建有效的标记兴趣需要一些反复试验,因为脸书这个黑箱的许多细节仍然不透明。
JMIR Public Health Surveill. 2018-3-28
J Med Internet Res. 2017-5-8
J Med Internet Res. 2020-6-5
J Med Internet Res. 2014-10-27
J Med Internet Res. 2018-11-8
PLoS One. 2019-10-24
PeerJ Comput Sci. 2022-6-21
J Med Internet Res. 2020-4-28
JMIR Public Health Surveill. 2019-5-29
J Med Internet Res. 2016-10-4
Am J Health Promot. 2016-5
J Am Med Inform Assoc. 2017-3-1
J Med Internet Res. 2016-6-14
JMIR Public Health Surveill. 2016-5-30