Suppr超能文献

利用脸书进行大规模在线随机临床试验招募:有效的广告策略。

Using Facebook for Large-Scale Online Randomized Clinical Trial Recruitment: Effective Advertising Strategies.

作者信息

Akers Laura, Gordon Judith S

机构信息

Oregon Research Institute, Eugene, OR, United States.

College of Nursing, University of Arizona, Tucson, AZ, United States.

出版信息

J Med Internet Res. 2018 Nov 8;20(11):e290. doi: 10.2196/jmir.9372.

Abstract

Targeted Facebook advertising can be an effective strategy to recruit participants for a large-scale online study. Facebook advertising is useful for reaching people in a wide geographic area, matching a specific demographic profile. It can also target people who would be unlikely to search for the information and would thus not be accessible via Google AdWords. It is especially useful when it is desirable not to raise awareness of the study in a demographic group that would be ineligible for the study. This paper describes the use of Facebook advertising to recruit and enroll 1145 women over a 15-month period for a randomized clinical trial to teach support skills to female partners of male smokeless tobacco users. This tutorial shares our study team's experiences, lessons learned, and recommendations to help researchers design Facebook advertising campaigns. Topics covered include designing the study infrastructure to optimize recruitment and enrollment tracking, creating a Facebook presence via a fan page, designing ads that attract potential participants while meeting Facebook's strict requirements, and planning and managing an advertising campaign that accommodates the rapid rate of diminishing returns for each ad.

摘要

针对性的脸书广告可以成为为大规模在线研究招募参与者的有效策略。脸书广告有助于覆盖广泛地理区域内符合特定人口统计学特征的人群。它还可以定位那些不太可能搜索相关信息、因此无法通过谷歌广告获得的人群。当不想在不符合研究资格的人群中提高对该研究的认知度时,脸书广告尤其有用。本文描述了如何在15个月的时间里利用脸书广告为一项随机临床试验招募并纳入1145名女性,该试验旨在向男性无烟烟草使用者的女性伴侣传授支持技能。本教程分享了我们研究团队的经验、教训和建议,以帮助研究人员设计脸书广告活动。涵盖的主题包括设计研究基础设施以优化招募和入组跟踪、通过粉丝页面在脸书上亮相、设计既能吸引潜在参与者又能满足脸书严格要求的广告,以及规划和管理一项能适应每条广告回报迅速递减的广告活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验