Suppr超能文献

突触处的胞吐作用感知与内吞作用触发:突触小泡胞吐-内吞偶联

Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis-Endocytosis Coupling.

作者信息

Lou Xuelin

机构信息

Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.

出版信息

Front Cell Neurosci. 2018 Mar 14;12:66. doi: 10.3389/fncel.2018.00066. eCollection 2018.

Abstract

The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can "sense" the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs.

摘要

完整的突触结构对于神经回路中的信息处理至关重要。在突触传递过程中,快速的囊泡胞吐作用会增加神经末梢的大小,而内吞作用则会抵消这种增加。越来越多的证据表明,在突触小泡循环过程中,突触小泡的胞吐作用和内吞作用在时间和空间上紧密相连,这一过程对于突触功能和结构稳定性至关重要。过去的研究已经阐明了突触小泡(SV)胞吐作用和内吞作用的分子细节;然而,在中枢突触中,及时连接这两个基本事件的机制仍知之甚少。在这里,我们讨论突触小泡循环的最新进展,并总结几种新兴的机制,通过这些机制突触可以“感知”胞吐作用的发生并及时启动代偿性内吞作用。它们包括钙感知、突触小泡蛋白感知和局部膜应力感知。此外,与活性区相邻的内吞区的空间组织为突触小泡胞吐作用和内吞作用之间的有效偶联提供了结构基础。通过将不同的内吞途径与突触小泡融合联系起来,这些机制确保了神经末梢必要的可塑性和稳健性,以满足多样化的生理需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55de/5861208/34e89f97ae01/fncel-12-00066-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验