Suppr超能文献

通过线粒体靶向和溴化近红外荧光团增强光动力癌症治疗

Enhanced Photodynamic Cancer Treatment by Mitochondria-Targeting and Brominated Near-Infrared Fluorophores.

作者信息

Noh Ilkoo, Lee DaeYong, Kim Heegon, Jeong Chan-Uk, Lee Yunsoo, Ahn Jung-Oh, Hyun Hoon, Park Ji-Ho, Kim Yeu-Chun

机构信息

Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 305-701 South Korea.

Department of Bio and Brain Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 305-701 South Korea.

出版信息

Adv Sci (Weinh). 2017 Dec 19;5(3):1700481. doi: 10.1002/advs.201700481. eCollection 2018 Mar.

Abstract

A noninvasive and selective therapy, photodynamic therapy (PDT) is widely researched in clinical fields; however, the lower efficiency of PDT can induce unexpected side effects. Mitochondria are extensively researched as target sites to maximize PDT effects because they play crucial roles in metabolism and can be used as cancer markers due to their high transmembrane potential. Here, a mitochondria targeting photodynamic therapeutic agent (MitDt) is developed. This photosensitizer is synthesized from heptamethine cyanine dyes, which are conjugated or modified as follows. The heptamethine meso-position is conjugated with a triphenylphosphonium derivative for mitochondrial targeting, the -alkyl side chain is modified for regulation of charge balance and solubility, and the indolenine groups are brominated to enhance reactive oxygen species generation (ROS) after laser irradiation. The synthesized MitDt increases the cancer uptake efficiency due to the lipo-cationic properties of the triphenylphosphonium, and the PDT effects of MitDt are amplified after laser irradiation because mitochondria are susceptible to ROS, the response to which triggers an apoptotic anticancer effect. Consequently, these hypotheses are demonstrated by in vitro and in vivo studies, and the results indicate strong potential for use of MitDts as efficient single-molecule-based PDT agents for cancer treatment.

摘要

光动力疗法(PDT)作为一种非侵入性且具有选择性的治疗方法,在临床领域得到了广泛研究;然而,PDT较低的效率可能会引发意想不到的副作用。线粒体作为使PDT效果最大化的靶位点受到了广泛研究,因为它们在新陈代谢中起着关键作用,并且由于其高跨膜电位可作为癌症标志物。在此,开发了一种线粒体靶向光动力治疗剂(MitDt)。这种光敏剂由七甲川菁染料合成,其共轭或修饰方式如下。七甲川中位与用于线粒体靶向的三苯基膦衍生物共轭,-烷基侧链经修饰以调节电荷平衡和溶解度,吲哚啉基团经溴化处理以增强激光照射后活性氧(ROS)的生成。合成的MitDt由于三苯基膦的脂溶性阳离子特性而提高了癌症摄取效率,并且激光照射后MitDt的PDT效果得到增强,因为线粒体对ROS敏感,ROS引发的反应触发了凋亡抗癌效应。因此,这些假设通过体外和体内研究得到了证实,结果表明MitDts作为基于单分子的高效PDT癌症治疗剂具有巨大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f891/5867131/376be9759a4c/ADVS-5-1700481-g006.jpg

相似文献

1
Enhanced Photodynamic Cancer Treatment by Mitochondria-Targeting and Brominated Near-Infrared Fluorophores.
Adv Sci (Weinh). 2017 Dec 19;5(3):1700481. doi: 10.1002/advs.201700481. eCollection 2018 Mar.
3
The investigation of unique water-soluble heptamethine cyanine dye for use as NIR photosensitizer in photodynamic therapy of cancer cells.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Mar 5;228:117702. doi: 10.1016/j.saa.2019.117702. Epub 2019 Nov 1.
4
A Selenium-Substituted Heptamethine Cyanine Photosensitizer for Near-Infrared Photodynamic Therapy.
Chembiochem. 2022 Nov 18;23(22):e202200421. doi: 10.1002/cbic.202200421. Epub 2022 Oct 18.
6
Near-Infrared Fluorescent Heptamethine Cyanine Dyes for COX-2 Targeted Photodynamic Cancer Therapy.
ChemMedChem. 2022 May 4;17(9):e202100780. doi: 10.1002/cmdc.202100780. Epub 2022 Feb 17.
7
Tetraphenylporphine-Modified Polymeric Nanoparticles Containing NIR Photosensitizer for Mitochondria-Targeting and Imaging-Guided Photodynamic Therapy.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):1043-1051. doi: 10.1021/acsbiomaterials.9b01662. Epub 2020 Jan 23.
8
Iodinated Cyanine Dyes for Fast Near-Infrared-Guided Deep Tissue Synergistic Phototherapy.
ACS Appl Mater Interfaces. 2019 Jul 24;11(29):25720-25729. doi: 10.1021/acsami.9b07694. Epub 2019 Jul 11.
9
Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy.
Acta Biomater. 2020 May;108:273-284. doi: 10.1016/j.actbio.2020.03.027. Epub 2020 Mar 21.

引用本文的文献

1
Advancements in research on the precise eradication of cancer cells through nanophotocatalytic technology.
Front Oncol. 2025 Apr 1;15:1523444. doi: 10.3389/fonc.2025.1523444. eCollection 2025.
3
Design strategies for organelle-selective fluorescent probes: where to start?
RSC Adv. 2025 Jan 22;15(3):2115-2131. doi: 10.1039/d4ra08032g. eCollection 2025 Jan 16.
5
Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy.
Commun Chem. 2024 Aug 13;7(1):180. doi: 10.1038/s42004-024-01256-6.
6
Totally Caged Type I Pro-Photosensitizer for Oxygen-Independent Synergistic Phototherapy of Hypoxic Tumors.
Adv Sci (Weinh). 2024 Aug;11(31):e2400462. doi: 10.1002/advs.202400462. Epub 2024 Jun 17.
7
The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma.
Mol Biotechnol. 2025 Apr;67(4):1367-1381. doi: 10.1007/s12033-024-01151-4. Epub 2024 Apr 29.
8
Theranostics with photodynamic therapy for personalized medicine: to see and to treat.
Theranostics. 2023 Oct 9;13(15):5501-5544. doi: 10.7150/thno.87363. eCollection 2023.
10
Single Small Molecule-Assembled Mitochondria Targeting Nanofibers for Enhanced Photodynamic Cancer Therapy in Vivo.
Adv Funct Mater. 2021 Mar 3;31(10). doi: 10.1002/adfm.202008460. Epub 2020 Dec 16.

本文引用的文献

1
Mitochondria-targeted aggregation induced emission theranostics: crucial importance of activation.
Chem Sci. 2016 Sep 1;7(9):6050-6059. doi: 10.1039/c6sc02236g. Epub 2016 Jun 7.
2
Conformation-switchable helical polypeptide eliciting selective pro-apoptotic activity for cancer therapy.
J Control Release. 2017 Oct 28;264:24-33. doi: 10.1016/j.jconrel.2017.08.001. Epub 2017 Aug 1.
3
A Mitochondria-Targeted Photosensitizer Showing Improved Photodynamic Therapy Effects Under Hypoxia.
Angew Chem Int Ed Engl. 2016 Aug 16;55(34):9947-51. doi: 10.1002/anie.201604130. Epub 2016 Jul 6.
4
Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform.
J Control Release. 2017 Jan 28;246:142-154. doi: 10.1016/j.jconrel.2016.04.040. Epub 2016 May 8.
5
Calcium phosphate-based organic-inorganic hybrid nanocarriers with pH-responsive on/off switch for photodynamic therapy.
Biomater Sci. 2016 May 26;4(5):826-38. doi: 10.1039/c6bm00011h. Epub 2016 Mar 14.
10
Mitochondria and cancer.
Cancer Metab. 2014 Jun 10;2:8. doi: 10.1186/2049-3002-2-8. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验