Suppr超能文献

利用 Rosetta ResidueDisorder 应用程序准确预测蛋白质的无序区域。

Accurately Predicting Disordered Regions of Proteins Using Rosetta ResidueDisorder Application.

机构信息

Department of Chemistry and Biochemistry , Ohio State University , Columbus , Ohio 43210 , United States.

出版信息

J Phys Chem B. 2018 Apr 12;122(14):3920-3930. doi: 10.1021/acs.jpcb.8b01763. Epub 2018 Mar 29.

Abstract

Although many proteins necessitate well-folded structures to properly instigate their biological functions, a large fraction of functioning proteins contain regions-known as intrinsically disordered protein regions-where stable structures are not likely to form. Notable functional roles of intrinsically disordered proteins are in transcriptional regulation, translation, and cellular signal transduction. Moreover, intrinsically disordered protein regions are highly abundant in many proteins associated with various human diseases, therefore these segments have become attractive drug targets for potential therapeutics. Over the past decades, numerous computational methods have been developed to accurately predict disordered regions of proteins. Here we introduce a user-friendly and reliable approach for the prediction of disordered protein regions using the structure prediction software Rosetta. Using 245 proteins from a benchmark data set (16 DisProt database proteins) and a test data set (229 proteins with NMR data), we use Rosetta to predict the global protein structures and then show that there is a statistically significant difference between Rosetta scores in disordered and ordered regions, with scores being less favorable in disordered regions. Furthermore, the difference in scores between ordered and disordered protein regions is sufficient to accurately identify disordered protein regions. As a result, our Rosetta ResidueDisorder method (benchmark data set prediction accuracy of 71.77% and independent test data set prediction accuracy of 65.37%) outperformed other established disorder prediction tools and did not exhibit a biased prediction toward either ordered or disordered regions. To facilitate usage, a Rosetta application has been developed for the Rosetta ResidueDisorder method.

摘要

虽然许多蛋白质需要正确折叠的结构才能发挥其生物功能,但很大一部分具有功能的蛋白质含有区域,称为固有无序蛋白质区域,这些区域不太可能形成稳定的结构。固有无序蛋白质的显著功能作用是在转录调控、翻译和细胞信号转导中。此外,固有无序蛋白质区域在许多与各种人类疾病相关的蛋白质中高度丰富,因此这些片段已成为有吸引力的潜在治疗药物靶点。在过去的几十年中,已经开发出许多计算方法来准确预测蛋白质的无序区域。在这里,我们使用结构预测软件 Rosetta 介绍了一种用于预测无序蛋白质区域的用户友好且可靠的方法。我们使用来自基准数据集(16 个 DisProt 数据库蛋白质)和测试数据集(229 个具有 NMR 数据的蛋白质)的 245 个蛋白质,使用 Rosetta 预测全局蛋白质结构,然后表明无序区域和有序区域的 Rosetta 分数之间存在统计学上显著的差异,无序区域的分数较差。此外,有序和无序蛋白质区域之间的分数差异足以准确识别无序蛋白质区域。结果,我们的 Rosetta ResidueDisorder 方法(基准数据集预测准确率为 71.77%,独立测试数据集预测准确率为 65.37%)优于其他已建立的无序预测工具,并且没有表现出对有序或无序区域的偏向预测。为了方便使用,我们为 Rosetta ResidueDisorder 方法开发了一个 Rosetta 应用程序。

相似文献

1
Accurately Predicting Disordered Regions of Proteins Using Rosetta ResidueDisorder Application.
J Phys Chem B. 2018 Apr 12;122(14):3920-3930. doi: 10.1021/acs.jpcb.8b01763. Epub 2018 Mar 29.
2
Measuring Intrinsic Disorder and Tracking Conformational Transitions Using Rosetta ResidueDisorder.
J Phys Chem B. 2019 Aug 22;123(33):7103-7112. doi: 10.1021/acs.jpcb.9b04333. Epub 2019 Aug 14.
3
Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins.
J Comput Aided Mol Des. 2017 May;31(5):453-466. doi: 10.1007/s10822-017-0020-y. Epub 2017 Apr 1.
4
Prediction of Intrinsic Disorder Using Rosetta ResidueDisorder and AlphaFold2.
J Phys Chem B. 2022 Oct 27;126(42):8439-8446. doi: 10.1021/acs.jpcb.2c05508. Epub 2022 Oct 17.
5
DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.
PLoS One. 2015 Jun 19;10(6):e0128334. doi: 10.1371/journal.pone.0128334. eCollection 2015.
6
Functional roles of transiently and intrinsically disordered regions within proteins.
FEBS J. 2015 Apr;282(7):1182-9. doi: 10.1111/febs.13202. Epub 2015 Jan 29.
7
Predicting Conformational Disorder.
Methods Mol Biol. 2016;1415:265-99. doi: 10.1007/978-1-4939-3572-7_14.
8
Prediction of the Disordered Regions of Intrinsically Disordered Proteins Based on the Molecular Functions.
Protein Pept Lett. 2020;27(4):279-286. doi: 10.2174/0929866526666190226160629.
9
Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch.
Nature. 2015 Mar 5;519(7541):106-9. doi: 10.1038/nature13999. Epub 2014 Dec 22.
10
Prediction of protein disorder based on IUPred.
Protein Sci. 2018 Jan;27(1):331-340. doi: 10.1002/pro.3334. Epub 2017 Nov 16.

引用本文的文献

1
Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins.
Nat Protoc. 2023 Nov;18(11):3157-3172. doi: 10.1038/s41596-023-00876-x. Epub 2023 Sep 22.
3
Recent Advances in NMR Protein Structure Prediction with ROSETTA.
Int J Mol Sci. 2023 Apr 25;24(9):7835. doi: 10.3390/ijms24097835.
4
Ab Initio Modelling of the Structure of ToxA-like and MAX Fungal Effector Proteins.
Int J Mol Sci. 2023 Mar 26;24(7):6262. doi: 10.3390/ijms24076262.
8
Predicting Protein Conformational Disorder and Disordered Binding Sites.
Methods Mol Biol. 2022;2449:95-147. doi: 10.1007/978-1-0716-2095-3_4.
9
Predicting substitutions to modulate disorder and stability in coiled-coils.
BMC Bioinformatics. 2020 Dec 21;21(Suppl 19):573. doi: 10.1186/s12859-020-03867-x.
10
A Unified De Novo Approach for Predicting the Structures of Ordered and Disordered Proteins.
J Phys Chem B. 2020 Jul 9;124(27):5538-5548. doi: 10.1021/acs.jpcb.0c02924. Epub 2020 Jun 11.

本文引用的文献

1
Iterative Molecular Dynamics-Rosetta Membrane Protein Structure Refinement Guided by Cryo-EM Densities.
J Chem Theory Comput. 2017 Oct 10;13(10):5131-5145. doi: 10.1021/acs.jctc.7b00464. Epub 2017 Sep 26.
2
Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions.
Cell Mol Life Sci. 2017 Sep;74(17):3069-3090. doi: 10.1007/s00018-017-2555-4. Epub 2017 Jun 6.
3
The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.
J Chem Theory Comput. 2017 Jun 13;13(6):3031-3048. doi: 10.1021/acs.jctc.7b00125. Epub 2017 May 12.
4
Protocols for Molecular Modeling with Rosetta3 and RosettaScripts.
Biochemistry. 2016 Aug 30;55(34):4748-63. doi: 10.1021/acs.biochem.6b00444. Epub 2016 Aug 16.
5
An Overview of Predictors for Intrinsically Disordered Proteins over 2010-2014.
Int J Mol Sci. 2015 Sep 29;16(10):23446-62. doi: 10.3390/ijms161023446.
6
Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand.
PLoS One. 2015 Jul 24;10(7):e0132508. doi: 10.1371/journal.pone.0132508. eCollection 2015.
8
Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta.
J Chem Theory Comput. 2015 Feb 10;11(2):609-22. doi: 10.1021/ct500864r.
9
Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement.
Nat Methods. 2015 Apr;12(4):361-365. doi: 10.1038/nmeth.3286. Epub 2015 Feb 23.
10
Improving protein order-disorder classification using charge-hydropathy plots.
BMC Bioinformatics. 2014;15 Suppl 17(Suppl 17):S4. doi: 10.1186/1471-2105-15-S17-S4. Epub 2014 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验