Suppr超能文献

2010 - 2014年内在无序蛋白质预测因子概述。

An Overview of Predictors for Intrinsically Disordered Proteins over 2010-2014.

作者信息

Li Jianzong, Feng Yu, Wang Xiaoyun, Li Jing, Liu Wen, Rong Li, Bao Jinku

机构信息

College of Life Sciences & Key Laboratory of Ministry of Education for Bio-Resources and Bio-Environment, Sichuan University, Chengdu 610064, China.

State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

出版信息

Int J Mol Sci. 2015 Sep 29;16(10):23446-62. doi: 10.3390/ijms161023446.

Abstract

The sequence-structure-function paradigm of proteins has been changed by the occurrence of intrinsically disordered proteins (IDPs). Benefiting from the structural disorder, IDPs are of particular importance in biological processes like regulation and signaling. IDPs are associated with human diseases, including cancer, cardiovascular disease, neurodegenerative diseases, amyloidoses, and several other maladies. IDPs attract a high level of interest and a substantial effort has been made to develop experimental and computational methods. So far, more than 70 prediction tools have been developed since 1997, within which 17 predictors were created in the last five years. Here, we presented an overview of IDPs predictors developed during 2010-2014. We analyzed the algorithms used for IDPs prediction by these tools and we also discussed the basic concept of various prediction methods for IDPs. The comparison of prediction performance among these tools is discussed as well.

摘要

内在无序蛋白质(IDP)的出现改变了蛋白质的序列-结构-功能范式。得益于结构上的无序性,IDP在诸如调节和信号传导等生物过程中具有特殊重要性。IDP与人类疾病相关,包括癌症、心血管疾病、神经退行性疾病、淀粉样变性病以及其他几种疾病。IDP引起了高度关注,并且已经付出了巨大努力来开发实验和计算方法。到目前为止,自1997年以来已经开发了70多种预测工具,其中有17种预测器是在过去五年中创建的。在此,我们概述了2010 - 2014年期间开发的IDP预测器。我们分析了这些工具用于IDP预测的算法,并且还讨论了IDP各种预测方法的基本概念。同时也讨论了这些工具之间预测性能的比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2826/4632708/91e037aa9158/ijms-16-23446-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验