Suppr超能文献

将高斯图形模型与后验预测分布及贝叶斯模型选择进行比较。

Comparing Gaussian graphical models with the posterior predictive distribution and Bayesian model selection.

作者信息

Williams Donald R, Rast Philippe, Pericchi Luis R, Mulder Joris

机构信息

Department of Psychology.

Department of Mathematics.

出版信息

Psychol Methods. 2020 Oct;25(5):653-672. doi: 10.1037/met0000254. Epub 2020 Feb 20.

Abstract

Gaussian graphical models are commonly used to characterize conditional (in)dependence structures (i.e., partial correlation networks) of psychological constructs. Recently attention has shifted from estimating single networks to those from various subpopulations. The focus is primarily to detect differences or demonstrate replicability. We introduce two novel Bayesian methods for comparing networks that explicitly address these aims. The first is based on the posterior predictive distribution, with a symmetric version of Kullback-Leibler divergence as the discrepancy measure, that tests differences between two (or more) multivariate normal distributions. The second approach makes use of Bayesian model comparison, with the Bayes factor, and allows for gaining evidence for invariant network structures. This overcomes limitations of current approaches in the literature that use classical hypothesis testing, where it is only possible to determine whether groups are significantly different from each other. With simulation we show the posterior predictive method is approximately calibrated under the null hypothesis (α = .05) and has more power to detect differences than alternative approaches. We then examine the necessary sample sizes for detecting invariant network structures with Bayesian hypothesis testing, in addition to how this is influenced by the choice of prior distribution. The methods are applied to posttraumatic stress disorder symptoms that were measured in 4 groups. We end by summarizing our major contribution, that is proposing 2 novel methods for comparing Gaussian graphical models (GGMs), which extends beyond the social-behavioral sciences. The methods have been implemented in the R package BGGM. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

摘要

高斯图形模型通常用于刻画心理结构的条件(非)依赖结构(即偏相关网络)。最近,注意力已从估计单个网络转移到估计来自不同亚群体的网络。重点主要是检测差异或证明可重复性。我们引入了两种新颖的贝叶斯方法来比较网络,以明确实现这些目标。第一种方法基于后验预测分布,使用对称版本的库尔贝克-莱布勒散度作为差异度量,用于检验两个(或更多)多元正态分布之间的差异。第二种方法利用贝叶斯模型比较和贝叶斯因子,以获取关于不变网络结构的证据。这克服了文献中当前使用经典假设检验方法的局限性,在经典假设检验中只能确定组间是否存在显著差异。通过模拟,我们表明后验预测方法在原假设(α = 0.05)下大致校准,并且比其他方法具有更强的检测差异的能力。然后,我们研究了使用贝叶斯假设检验检测不变网络结构所需的样本量,以及先验分布的选择如何影响这一点。这些方法应用于对4组人群测量的创伤后应激障碍症状。最后,我们总结了主要贡献,即提出了两种新颖的比较高斯图形模型(GGM)的方法,其应用范围超出了社会行为科学领域。这些方法已在R包BGGM中实现。(PsycInfo数据库记录(c)2020美国心理学会,保留所有权利)

相似文献

3
Fast Bayesian inference in large Gaussian graphical models.大型高斯图模型中的快速贝叶斯推理。
Biometrics. 2019 Dec;75(4):1288-1298. doi: 10.1111/biom.13064. Epub 2019 May 6.
4
A tutorial on regularized partial correlation networks.正则化偏相关网络教程。
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.
6
Posterior calibration of posterior predictive p values.后验预测 p 值的后验校准。
Psychol Methods. 2017 Jun;22(2):382-396. doi: 10.1037/met0000142.
7
Efficient alternatives for Bayesian hypothesis tests in psychology.心理学中贝叶斯假设检验的有效替代方法。
Psychol Methods. 2024 Apr;29(2):243-261. doi: 10.1037/met0000482. Epub 2022 Apr 14.
8
9
A tutorial on testing hypotheses using the Bayes factor.贝叶斯因子假设检验教程。
Psychol Methods. 2019 Oct;24(5):539-556. doi: 10.1037/met0000201. Epub 2019 Feb 11.

引用本文的文献

8
Comparing PTSD symptom networks in type I vs. type II trauma survivors.比较 I 型创伤幸存者和 II 型创伤幸存者的 PTSD 症状网络。
Eur J Psychotraumatol. 2022 Sep 21;13(2):2114260. doi: 10.1080/20008066.2022.2114260. eCollection 2022.
10

本文引用的文献

1
Comparing network structures on three aspects: A permutation test.比较网络结构的三个方面:置换检验。
Psychol Methods. 2023 Dec;28(6):1273-1285. doi: 10.1037/met0000476. Epub 2022 Apr 11.
3
Back to the basics: Rethinking partial correlation network methodology.回归基础:重新思考偏相关网络方法。
Br J Math Stat Psychol. 2020 May;73(2):187-212. doi: 10.1111/bmsp.12173. Epub 2019 Jun 17.
4
Quantifying the Reliability and Replicability of Psychopathology Network Characteristics.量化精神病理学网络特征的可靠性和可重复性。
Multivariate Behav Res. 2021 Mar-Apr;56(2):224-242. doi: 10.1080/00273171.2019.1616526. Epub 2019 May 29.
5
On Nonregularized Estimation of Psychological Networks.非正则化心理网络估计。
Multivariate Behav Res. 2019 Sep-Oct;54(5):719-750. doi: 10.1080/00273171.2019.1575716. Epub 2019 Apr 8.
8
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.横截面和时间序列数据中的高斯图模型。
Multivariate Behav Res. 2018 Jul-Aug;53(4):453-480. doi: 10.1080/00273171.2018.1454823. Epub 2018 Apr 16.
9
A tutorial on regularized partial correlation networks.正则化偏相关网络教程。
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验