Torres Elizabeth B, Vero Joe, Rai Richa
Psychology Department, Rutgers University, Piscataway, NJ 08854, USA.
Computer Science Department, Computational Biomedicine Imaging and Modeling, Rutgers Center for Cognitive Science, Rutgers University, Piscataway, NJ 08854, USA.
Sensors (Basel). 2018 Mar 29;18(4):1025. doi: 10.3390/s18041025.
Wearable biosensors, such as those embedded in smart phones, can provide data to assess neuro-motor control in mobile settings, at homes, schools, workplaces and clinics. However, because most machine learning algorithms currently used to analyze such data require several steps that depend on human heuristics, the analyses become computationally expensive and rather subjective. Further, there is no standardized scale or set of tasks amenable to take advantage of such technology in ways that permit broad dissemination and reproducibility of results. Indeed, there is a critical need for fully objective automated analytical methods that easily handle the deluge of data these sensors output, while providing standardized scales amenable to apply across large sections of the population, to help promote personalized-mobile medicine. Here we use an open-access data set from Kaggle.com to illustrate the use of a new statistical platform and standardized data types applied to smart phone accelerometer and gyroscope data from 30 participants, performing six different activities. We report full distinction without confusion of the activities from the Kaggle set using a single parameter (linear acceleration or angular speed). We further extend the use of our platform to characterize data from commercially available smart shoes, using gait patterns within a set of experiments that probe nervous systems functioning and levels of motor control.
可穿戴生物传感器,比如那些嵌入智能手机中的传感器,能够提供数据以在移动场景中、家中、学校、工作场所及诊所评估神经运动控制。然而,由于目前用于分析此类数据的大多数机器学习算法需要依赖人工启发式方法的几个步骤,分析过程在计算上变得昂贵且相当主观。此外,不存在适用于利用此类技术的标准化量表或任务集,从而无法实现结果的广泛传播和可重复性。确实,迫切需要完全客观的自动化分析方法,这些方法能够轻松处理这些传感器输出的大量数据,同时提供适用于广泛人群的标准化量表,以助力推广个性化移动医疗。在此,我们使用来自Kaggle.com的一个开放获取数据集,来说明一种新的统计平台以及应用于来自30名参与者的智能手机加速度计和陀螺仪数据的标准化数据类型的使用情况,这些参与者正在进行六种不同的活动。我们报告称,使用单个参数(线性加速度或角速度)就能完全区分Kaggle数据集中的活动且不会混淆。我们进一步扩展了我们平台的用途,通过在一组探究神经系统功能和运动控制水平的实验中利用步态模式,来对市售智能鞋的数据进行特征描述。