在 AAT 缺乏症的小鼠模型中,体内基因组编辑部分恢复了α1-抗胰蛋白酶。
In Vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency.
机构信息
1 RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts.
2 Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts.
出版信息
Hum Gene Ther. 2018 Aug;29(8):853-860. doi: 10.1089/hum.2017.225. Epub 2018 May 14.
CRISPR (clustered regularly interspaced short palindromic repeats) genome editing holds promise in the treatment of genetic diseases that currently lack effective long-term therapies. Patients with alpha-1 antitrypsin (AAT) deficiency develop progressive lung disease due to the loss of AAT's antiprotease function and liver disease due to a toxic gain of function of the common mutant allele. However, it remains unknown whether CRISPR-mediated AAT correction in the liver, where AAT is primarily expressed, can correct either or both defects. Here we show that AAV delivery of CRISPR can effectively correct Z-AAT mutation in the liver of a transgenic mouse model. Specifically, we co-injected two AAVs: one expressing Cas9 and another encoding an AAT guide RNA and homology-directed repair template. In both neonatal and adult mice, this treatment partially restored M-AAT in the serum. Furthermore, deep sequencing confirmed both indel mutations and precise gene correction in the liver, permitting careful analysis of gene editing events in vivo. This study demonstrates a proof of concept for the application of CRISPR-Cas9 technology to correct AAT mutations in vivo and validates continued exploration of this approach for the treatment of patients with AAT deficiency.
CRISPR(成簇规律间隔短回文重复)基因组编辑在治疗目前缺乏有效长期治疗方法的遗传疾病方面具有广阔的前景。由于缺乏 AAT 的抗蛋白酶功能,α-1 抗胰蛋白酶(AAT)缺乏症患者会出现进行性肺部疾病,由于常见突变等位基因的毒性获得功能,还会出现肝脏疾病。然而,目前尚不清楚 CRISPR 介导的肝脏中 AAT 的校正是否可以纠正其中一种或两种缺陷,肝脏是 AAT 主要表达的部位。在这里,我们展示了 CRISPR 通过 AAV 传递可以有效地纠正转基因小鼠模型肝脏中的 Z-AAT 突变。具体来说,我们共注射了两种 AAV:一种表达 Cas9,另一种表达 AAT 向导 RNA 和同源定向修复模板。在新生和成年小鼠中,这种治疗方法部分恢复了血清中的 M-AAT。此外,深度测序证实了肝脏中的插入缺失突变和精确的基因校正,允许对体内基因编辑事件进行仔细分析。这项研究证明了 CRISPR-Cas9 技术在体内纠正 AAT 突变的应用概念验证,并验证了继续探索这种方法治疗 AAT 缺乏症患者的可行性。