Deneault Eric
Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada.
Curr Issues Mol Biol. 2024 Apr 30;46(5):4147-4185. doi: 10.3390/cimb46050255.
Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a powerful tool for precise and targeted modifications of the human genome. CRISPR-Cas9 nuclease, base editing, and prime editing have taken center stage, demonstrating remarkable precision and efficacy in targeted ex vivo and in vivo genomic modifications. Enhanced delivery systems, including viral vectors and nanoparticles, have further improved the efficiency and safety of therapeutic gene editing, advancing their clinical translatability. The exploration of CRISPR-Cas systems beyond the commonly used Cas9, such as the development of Cas12 and Cas13 variants, has expanded the repertoire of gene editing tools, enabling more intricate modifications and therapeutic interventions. Outstandingly, prime editing represents a significant leap forward, given its unparalleled versatility and minimization of off-target effects. These innovations have paved the way for therapeutic gene editing in a multitude of previously incurable genetic disorders, ranging from monogenic diseases to complex polygenic conditions. This review highlights the latest innovative studies in the field, emphasizing breakthrough technologies in preclinical and clinical trials, and their applications in the realm of precision medicine. However, challenges such as off-target effects and ethical considerations remain, necessitating continued research to refine safety profiles and ethical frameworks.
近年来,治疗性基因编辑取得了前所未有的进展,彻底改变了治疗遗传疾病的方法。在这篇全面的综述中,我们讨论了一系列里程碑式的进展,这些进展促成了基于成簇规律间隔短回文重复序列(CRISPR)的技术的出现,使其成为精确和有针对性地修饰人类基因组的强大工具。CRISPR-Cas9核酸酶、碱基编辑和引导编辑已成为核心技术,在体外和体内靶向基因组修饰中显示出显著的精度和效力。包括病毒载体和纳米颗粒在内的增强递送系统进一步提高了治疗性基因编辑的效率和安全性,推动了它们的临床转化。对CRISPR-Cas系统中常用的Cas9之外的探索,如Cas12和Cas13变体的开发,扩大了基因编辑工具的范围,实现了更复杂的修饰和治疗干预。值得注意的是,引导编辑代表了一个重大的飞跃,因为它具有无与伦比的多功能性且脱靶效应最小化。这些创新为治疗多种以前无法治愈的遗传疾病的基因编辑铺平了道路,从单基因疾病到复杂的多基因疾病。这篇综述重点介绍了该领域的最新创新研究,强调了临床前和临床试验中的突破性技术,以及它们在精准医学领域的应用。然而,脱靶效应和伦理考量等挑战依然存在,需要持续研究以完善安全性和伦理框架。
Curr Issues Mol Biol. 2024-4-30
Clin Kidney J. 2024-4-17
Hum Gene Ther. 2021-3
Int J Mol Sci. 2023-9-18
Drug Deliv Transl Res. 2023-5
Precis Clin Med. 2021-7-10
Curr Opin Obstet Gynecol. 2025-6-1
Ann Med Surg (Lond). 2025-8-19
Sci China Life Sci. 2025-7-2
Front Cell Infect Microbiol. 2025-5-27
Funct Integr Genomics. 2025-5-30
J Mol Neurosci. 2025-5-14
Front Genome Ed. 2025-4-2
Nat Biotechnol. 2024-7-22
Transl Neurodegener. 2024-4-12
Nat Commun. 2024-3-14
Int J Nanomedicine. 2024-3-6
Front Bioeng Biotechnol. 2024-1-18