文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

治疗性基因编辑在遗传疾病中的最新应用

Recent Therapeutic Gene Editing Applications to Genetic Disorders.

作者信息

Deneault Eric

机构信息

Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada.

出版信息

Curr Issues Mol Biol. 2024 Apr 30;46(5):4147-4185. doi: 10.3390/cimb46050255.


DOI:10.3390/cimb46050255
PMID:38785523
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11119904/
Abstract

Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a powerful tool for precise and targeted modifications of the human genome. CRISPR-Cas9 nuclease, base editing, and prime editing have taken center stage, demonstrating remarkable precision and efficacy in targeted ex vivo and in vivo genomic modifications. Enhanced delivery systems, including viral vectors and nanoparticles, have further improved the efficiency and safety of therapeutic gene editing, advancing their clinical translatability. The exploration of CRISPR-Cas systems beyond the commonly used Cas9, such as the development of Cas12 and Cas13 variants, has expanded the repertoire of gene editing tools, enabling more intricate modifications and therapeutic interventions. Outstandingly, prime editing represents a significant leap forward, given its unparalleled versatility and minimization of off-target effects. These innovations have paved the way for therapeutic gene editing in a multitude of previously incurable genetic disorders, ranging from monogenic diseases to complex polygenic conditions. This review highlights the latest innovative studies in the field, emphasizing breakthrough technologies in preclinical and clinical trials, and their applications in the realm of precision medicine. However, challenges such as off-target effects and ethical considerations remain, necessitating continued research to refine safety profiles and ethical frameworks.

摘要

近年来,治疗性基因编辑取得了前所未有的进展,彻底改变了治疗遗传疾病的方法。在这篇全面的综述中,我们讨论了一系列里程碑式的进展,这些进展促成了基于成簇规律间隔短回文重复序列(CRISPR)的技术的出现,使其成为精确和有针对性地修饰人类基因组的强大工具。CRISPR-Cas9核酸酶、碱基编辑和引导编辑已成为核心技术,在体外和体内靶向基因组修饰中显示出显著的精度和效力。包括病毒载体和纳米颗粒在内的增强递送系统进一步提高了治疗性基因编辑的效率和安全性,推动了它们的临床转化。对CRISPR-Cas系统中常用的Cas9之外的探索,如Cas12和Cas13变体的开发,扩大了基因编辑工具的范围,实现了更复杂的修饰和治疗干预。值得注意的是,引导编辑代表了一个重大的飞跃,因为它具有无与伦比的多功能性且脱靶效应最小化。这些创新为治疗多种以前无法治愈的遗传疾病的基因编辑铺平了道路,从单基因疾病到复杂的多基因疾病。这篇综述重点介绍了该领域的最新创新研究,强调了临床前和临床试验中的突破性技术,以及它们在精准医学领域的应用。然而,脱靶效应和伦理考量等挑战依然存在,需要持续研究以完善安全性和伦理框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f952/11119904/ef71458ecada/cimb-46-00255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f952/11119904/ef71458ecada/cimb-46-00255-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f952/11119904/ef71458ecada/cimb-46-00255-g001.jpg

相似文献

[1]
Recent Therapeutic Gene Editing Applications to Genetic Disorders.

Curr Issues Mol Biol. 2024-4-30

[2]
Genome editing and kidney health.

Clin Kidney J. 2024-4-17

[3]
CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments.

Cells. 2024-5-8

[4]
CRISPR/Cas-Dependent and Nuclease-Free Therapeutic Gene Editing.

Hum Gene Ther. 2021-3

[5]
Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for CRISPR/Cas-Based Genome Editing.

ACS Nano. 2020-8-25

[6]
Evolution of CRISPR/Cas Systems for Precise Genome Editing.

Int J Mol Sci. 2023-9-18

[7]
Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing.

Drug Deliv Transl Res. 2023-5

[8]
Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics.

Precis Clin Med. 2021-7-10

[9]
Gene editing using CRISPR-Cas9 technology: potential implications in assisted reproduction.

Curr Opin Obstet Gynecol. 2025-6-1

[10]
Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders.

Curr Gene Ther. 2024

引用本文的文献

[1]
Innovative strategies for mitochondrial dysfunction in myeloproliferative neoplasms a step toward precision medicine.

Ann Med Surg (Lond). 2025-8-19

[2]
p47phox: A Central Regulator of NADPH Oxidase Function and a Promising Therapeutic Target in Redox-Related Diseases.

Cells. 2025-7-8

[3]
CRISPR/Cas9-mediated promoterless gene targeting reduces lysosome storage in MPS VII mice.

Sci China Life Sci. 2025-7-2

[4]
Biomaterials for bone infections: antibacterial mechanisms and immunomodulatory effects.

Front Cell Infect Microbiol. 2025-5-27

[5]
The CRISPR-Cas revolution in head and neck cancer: a new era of targeted therapy.

Funct Integr Genomics. 2025-5-30

[6]
Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems.

Microorganisms. 2025-5-14

[7]
From Genetics to Function: the Role of ABCA12 in Autism Neurobiology.

J Mol Neurosci. 2025-5-14

[8]
Transforming beef quality through healthy breeding: a strategy to reduce carcinogenic compounds and enhance human health: a review.

Mamm Genome. 2025-5-9

[9]
CRISPR-dependent base editing as a therapeutic strategy for rare monogenic disorders.

Front Genome Ed. 2025-4-2

[10]
Theological and Ethical Perspectives on Gene Editing and the Sanctity of Life: Rare Genetic Diseases in the Philippines as a Model.

J Relig Health. 2025-4-16

本文引用的文献

[1]
Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases.

Nat Biotechnol. 2024-7-22

[2]
CRISPR base editing-mediated correction of a tau mutation rescues cognitive decline in a mouse model of tauopathy.

Transl Neurodegener. 2024-4-12

[3]
Improving prime editing with an endogenous small RNA-binding protein.

Nature. 2024-4

[4]
Repurposing CRISPR-Cas13 systems for robust mRNA trans-splicing.

Nat Commun. 2024-3-14

[5]
Extracellular Vesicles: A New Star for Gene Drug Delivery.

Int J Nanomedicine. 2024-3-6

[6]
On- and off-target effects of paired CRISPR-Cas nickase in primary human cells.

Mol Ther. 2024-5-1

[7]
Homozygous ALS-linked mutations in TARDBP/TDP-43 lead to hypoactivity and synaptic abnormalities in human iPSC-derived motor neurons.

iScience. 2024-2-9

[8]
Durable and efficient gene silencing in vivo by hit-and-run epigenome editing.

Nature. 2024-3

[9]
Therapeutic In Vivo Gene Editing Achieved by a Hypercompact CRISPR-Cas12f1 System Delivered with All-in-One Adeno-Associated Virus.

Adv Sci (Weinh). 2024-5

[10]
Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics.

Front Bioeng Biotechnol. 2024-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索