National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, The Chinese Academy of Sciences, Shanghai 200083, PR China.
Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8505, Japan.
Science. 2018 May 18;360(6390):775-778. doi: 10.1126/science.aam9991. Epub 2018 Mar 29.
In modern microelectronic devices, hot electrons accelerate, scatter, and dissipate energy in nanoscale dimensions. Despite recent progress in nanothermometry, direct real-space mapping of hot-electron energy dissipation is challenging because existing techniques are restricted to probing the lattice rather than the electrons. We realize electronic nanothermometry by measuring local current fluctuations, or shot noise, associated with ultrafast hot-electron kinetic processes (~21 terahertz). Exploiting a scanning and contact-free tungsten tip as a local noise probe, we directly visualize hot-electron distributions before their thermal equilibration with the host gallium arsenide/aluminium gallium arsenide crystal lattice. With nanoconstriction devices, we reveal unexpected nonlocal energy dissipation at room temperature, which is reminiscent of ballistic transport of low-temperature quantum conductors.
在现代微电子器件中,热电子在纳米尺度上加速、散射并耗散能量。尽管在纳米测温方面取得了最近的进展,但由于现有技术仅限于探测晶格而不是电子,因此直接对热电子能量耗散进行实时空间映射具有挑战性。我们通过测量与超快热电子动力学过程(约 21 太赫兹)相关的局部电流涨落或散粒噪声来实现电子纳米测温。我们利用扫描和无接触的钨探针作为局部噪声探针,在热电子与宿主砷化镓/砷化铝镓晶格达到热平衡之前,直接可视化热电子分布。通过纳米缩颈器件,我们在室温下揭示了出乎意料的非局域能量耗散,这让人联想到低温量子导体的弹道输运。