State Key Laboratory of Surface Physics and Department of Physics, Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, 200433, Shanghai, People's Republic of China.
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 200083, Shanghai, China.
Nat Commun. 2023 Jun 22;14(1):3731. doi: 10.1038/s41467-023-39489-z.
The study of thermoelectric behaviors in miniatured transistors is of fundamental importance for developing bottom-level thermal management. Recent experimental progress in nanothermetry has enabled studies of the microscopic temperature profiles of nanostructured metals, semiconductors, two-dimensional material, and molecular junctions. However, observations of thermoelectric (such as nonequilibrium Peltier and Thomson) effect in prevailing silicon (Si)-a critical step for on-chip refrigeration using Si itself-have not been addressed so far. Here, we carry out nanothermometric imaging of both electron temperature (T) and lattice temperature (T) of a Si nanoconstriction device and find obvious thermoelectric effect in the vicinity of the electron hotspots: When the electrical current passes through the nanoconstriction channel generating electron hotspots (with T1500 K being much higher than T320 K), prominent thermoelectric effect is directly visualized attributable to the extremely large electron temperature gradient (~1 K/nm). The quantitative measurement shows a distinctive third-power dependence of the observed thermoelectric on the electrical current, which is consistent with the theoretically predicted nonequilibrium thermoelectric effects. Our work suggests that the nonequilibrium hot carriers may be potentially utilized for enhancing the thermoelectric performance and therefore sheds new light on the nanoscale thermal management of post-Moore nanoelectronics.
研究微型晶体管中的热电行为对于开发底层热管理至关重要。最近在纳米测温学方面的实验进展使人们能够研究纳米结构金属、半导体、二维材料和分子结的微观温度分布。然而,迄今为止,尚未观察到流行的硅(Si)中存在的热电(如非平衡珀尔帖和汤姆逊)效应,而这对于使用 Si 本身进行片上制冷是至关重要的一步。在这里,我们对 Si 纳米缩颈器件的电子温度(T)和晶格温度(T)进行了纳米测温成像,并在电子热点附近发现了明显的热电效应:当电流通过产生电子热点的纳米缩颈通道时(T1500 K 远高于 T320 K),由于极高的电子温度梯度(~1 K/nm),可以直接直观地看到显著的热电效应。定量测量显示,观察到的热电与电流呈独特的三次方关系,这与理论上预测的非平衡热电效应一致。我们的工作表明,非平衡热载流子可能被潜在地用于增强热电性能,从而为后摩尔纳米电子学的纳米尺度热管理开辟了新的途径。