School of Electrical and Information Engineering, University of Sydney, Sydney, Australia.
School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia.
PLoS One. 2018 Mar 30;13(3):e0195193. doi: 10.1371/journal.pone.0195193. eCollection 2018.
With the greatest burden of infant undernutrition and morbidity in low and middle income countries (LMICs), there is a need for suitable approaches to monitor infants in a simple, low-cost and effective manner. Anthropometry continues to play a major role in characterising growth and nutritional status.
We developed a range of models to aid in identifying neonates at risk of malnutrition. We first adopted a logistic regression approach to screen for a composite neonatal morbidity, low and high body fat (BF%) infants. We then developed linear regression models for the estimation of neonatal fat mass as an assessment of body composition and nutritional status.
We fitted logistic regression models combining up to four anthropometric variables to predict composite morbidity and low and high BF% neonates. The greatest area under receiver-operator characteristic curves (AUC with 95% confidence intervals (CI)) for identifying composite morbidity was 0.740 (0.63, 0.85), resulting from the combination of birthweight, length, chest and mid-thigh circumferences. The AUCs (95% CI) for identifying low and high BF% were 0.827 (0.78, 0.88) and 0.834 (0.79, 0.88), respectively. For identifying composite morbidity, BF% as measured via air displacement plethysmography showed strong predictive ability (AUC 0.786 (0.70, 0.88)), while birthweight percentiles had a lower AUC (0.695 (0.57, 0.82)). Birthweight percentiles could also identify low and high BF% neonates with AUCs of 0.792 (0.74, 0.85) and 0.834 (0.79, 0.88). We applied a sex-specific approach to anthropometric estimation of neonatal fat mass, demonstrating the influence of the testing sample size on the final model performance.
These models display potential for further development and evaluation in LMICs to detect infants in need of further nutritional management, especially where traditional methods of risk management such as birthweight for gestational age percentiles may be variable or non-existent, or unable to detect appropriately grown, low fat newborns.
在中低收入国家(LMICs),婴幼儿营养不良和发病的负担最大,因此需要采用合适的方法来简单、低成本且有效地监测婴幼儿。人体测量学在描述生长和营养状况方面仍然起着重要作用。
我们开发了一系列模型来帮助识别有营养不良风险的新生儿。我们首先采用逻辑回归方法筛选出复合新生儿发病率、低体脂(BF%)和高体脂婴儿。然后,我们开发了线性回归模型来估计新生儿脂肪量,以评估身体成分和营养状况。
我们拟合了逻辑回归模型,结合了多达四个人体测量变量,以预测复合发病率和低体脂和高体脂的新生儿。用于识别复合发病率的最大受试者工作特征曲线(ROC)下面积(95%置信区间(CI))为 0.740(0.63,0.85),来自于体重、身长、胸围和中大腿围的组合。用于识别低体脂和高体脂的 AUC(95%CI)分别为 0.827(0.78,0.88)和 0.834(0.79,0.88)。对于识别复合发病率,通过空气置换体描记术测量的 BF%显示出很强的预测能力(AUC 0.786(0.70,0.88)),而体重百分位数的 AUC 较低(0.695(0.57,0.82))。体重百分位数也可以识别低体脂和高体脂的新生儿,AUC 分别为 0.792(0.74,0.85)和 0.834(0.79,0.88)。我们采用了一种性别特异性的方法来估计新生儿脂肪量,证明了测试样本量对最终模型性能的影响。
这些模型在 LMICs 中具有进一步发展和评估的潜力,以检测需要进一步营养管理的婴儿,特别是在传统的风险管理方法(如胎龄体重百分位数)可能存在差异或不存在,或无法适当识别正常生长、低体脂的新生儿的情况下。