Suppr超能文献

利用表观密度的概念预测聚合物的离子迁移-质谱趋势。

Predicting Ion Mobility-Mass Spectrometry trends of polymers using the concept of apparent densities.

机构信息

Mass Spectrometry Laboratory, University of Liège, MolSys Research Unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium.

Mass Spectrometry Laboratory, University of Liège, MolSys Research Unit, Quartier Agora, Allée du Six Aout 11, B-4000 Liège, Belgium.

出版信息

Methods. 2018 Jul 15;144:125-133. doi: 10.1016/j.ymeth.2018.03.010. Epub 2018 Mar 28.

Abstract

Ion Mobility (IM) coupled to Mass Spectrometry (MS) has been used for several decades, bringing a fast separation dimension to the MS detection. IM-MS is a convenient tool for structural elucidation. The folding of macromolecules is often assessed with the support of computational chemistry. However, this strategy is strongly dependent on computational initial guesses. Here, we propose the analysis of the Collision Cross-Section (CCS) trends of synthetic homopolymers based on a fitting method which does not rely on computational chemistry a prioris of the three-dimensional structures. The CCS trends were evaluated as a function of the polymer chain length and the charge state. This method is also applicable to mobility trends. It leads to two parameters containing all information available through IM(-MS) measurements. One parameter can be interpreted as an apparent density. The second parameter is related to the shape of the ions and leads us to introduce the concept of trends with constant apparent density. Based on the two fitting parameters, a method for IM trend predictions is elaborated. Experimental deviations from the predictions facilitate detecting structural rearrangements and three-dimensional structure differences of the cationized polymer ions. This leads for instance to an easy identification and prediction of the presence of different polymer topologies in complex polymer mixtures. The classification of predicted trends could as well allow for software-assisted data processing. Finally, we suggest the link between the CCS trends of homopolymers and those obtained from (monodisperse) biomolecules to interpret potential folding differences during IM-MS studies.

摘要

离子淌度(IM)与质谱(MS)联用已经有几十年的历史了,它为 MS 检测带来了快速的分离维度。IM-MS 是结构解析的便捷工具。大分子的折叠通常在计算化学的支持下进行评估。然而,这种策略强烈依赖于计算初始假设的三维结构。在这里,我们提出了一种基于拟合方法的分析合成均聚物的碰撞截面(CCS)趋势的方法,该方法不依赖于计算化学的三维结构先验。CCS 趋势是作为聚合物链长和电荷状态的函数来评估的。该方法也适用于迁移率趋势。它产生了两个包含通过 IM(-MS)测量获得的所有信息的参数。一个参数可以解释为表观密度。第二个参数与离子的形状有关,这使我们引入了具有恒定表观密度的趋势的概念。基于两个拟合参数,详细阐述了一种 IM 趋势预测方法。实验与预测的偏差有助于检测阳离子化聚合物离子的结构重排和三维结构差异。例如,这可以很容易地识别和预测复杂聚合物混合物中存在不同的聚合物拓扑结构。预测趋势的分类也可以允许软件辅助数据处理。最后,我们建议将均聚物的 CCS 趋势与从(单分散)生物分子获得的 CCS 趋势联系起来,以解释在 IM-MS 研究期间可能存在的折叠差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验