Suppr超能文献

一种用于移动健康诊断的超低成本智能手机八通道光谱仪。

An ultra-low-cost smartphone octochannel spectrometer for mobile health diagnostics.

作者信息

Wang Li-Ju, Naudé Nicole, Chang Yu-Chung, Crivaro Anne, Kamoun Malek, Wang Ping, Li Lei

机构信息

School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington.

Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

J Biophotonics. 2018 Aug;11(8):e201700382. doi: 10.1002/jbio.201700382. Epub 2018 Apr 29.

Abstract

With the rapid development and proliferation of mobile devices with powerful computing power and the ability of integrating sensors into mobile devices, the potential impact of mobile health (mHealth) diagnostics on the public health is drawing researchers' attention. We developed a Smartphone Octo-channel Spectrometer (SOS) as a mHealth diagnostic tool. The SOS has nanoscale wavelength resolution, is self-illuminated from the smartphone itself, and is ultra-low cost (less than $20). A user interface controls the optical sensing parameters and precise alignment. After calibrating and testing the SOS by quantifying protein concentrations, we clinically validated the SOS by comparing the diagnostic performance of our device with that of a clinical spectrophotometer. About 180 serum samples from de-identified patients with 4 types of autoantibodies were blindly read the ELISA results. The accuracy of the SOS achieved 100% across the clinical reportable range compared with the FDA-approved instrument. Furthermore, the self-illuminated SOS only requires about half of the light intensity of the FDA-approved instrument to achieve clinical-level sensitivity. The low-energy-consumption and low-cost SOS enables point-of-care spectrophotometric sensing in low-resource areas, and can be integrated into point-of-care diagnostic systems for rapid multiplex readout and analysis at patient bedside or at home.

摘要

随着具备强大计算能力且能将传感器集成其中的移动设备迅速发展与普及,移动健康(mHealth)诊断技术对公共卫生的潜在影响正吸引着研究人员的关注。我们开发了一款智能手机八通道光谱仪(SOS)作为一种移动健康诊断工具。该SOS具有纳米级波长分辨率,由智能手机自身自发光,且成本超低(不到20美元)。一个用户界面可控制光学传感参数及精确对准。在通过量化蛋白质浓度对SOS进行校准和测试后,我们通过将我们设备的诊断性能与临床分光光度计的诊断性能进行比较,对SOS进行了临床验证。对来自身份不明的患有4种自身抗体的患者的约180份血清样本进行了ELISA结果的盲读。与FDA批准的仪器相比,SOS在整个临床可报告范围内的准确率达到了100%。此外,自发光的SOS仅需FDA批准仪器约一半的光强度就能达到临床级灵敏度。低能耗且低成本的SOS能够在资源匮乏地区实现即时护理分光光度传感,并且可以集成到即时护理诊断系统中,以便在患者床边或家中进行快速多重读出和分析。

相似文献

1
An ultra-low-cost smartphone octochannel spectrometer for mobile health diagnostics.
J Biophotonics. 2018 Aug;11(8):e201700382. doi: 10.1002/jbio.201700382. Epub 2018 Apr 29.
2
A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.
Biosens Bioelectron. 2017 Jan 15;87:686-692. doi: 10.1016/j.bios.2016.09.021. Epub 2016 Sep 9.
3
Smartphone based bioanalytical and diagnosis applications: A review.
Biosens Bioelectron. 2018 Apr 15;102:136-149. doi: 10.1016/j.bios.2017.11.021. Epub 2017 Nov 6.
4
A Randomized Trial of Pocket-Echocardiography Integrated Mobile Health Device Assessments in Modern Structural Heart Disease Clinics.
JACC Cardiovasc Imaging. 2018 Apr;11(4):546-557. doi: 10.1016/j.jcmg.2017.06.019. Epub 2017 Oct 5.
5
A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid.
Anal Chim Acta. 2020 Jan 6;1093:150-159. doi: 10.1016/j.aca.2019.09.071. Epub 2019 Oct 2.
6
Analytical validation of an ultra low-cost mobile phone microplate reader for infectious disease testing.
Clin Chim Acta. 2018 Jul;482:21-26. doi: 10.1016/j.cca.2018.03.013. Epub 2018 Mar 23.
8
Multiplex Smartphone Diagnostics.
Methods Mol Biol. 2017;1546:295-302. doi: 10.1007/978-1-4939-6730-8_26.
9
G-Fresnel smartphone spectrometer.
Lab Chip. 2016 Jan 21;16(2):246-50. doi: 10.1039/c5lc01226k.

引用本文的文献

1
Review of Miniaturized Computational Spectrometers.
Sensors (Basel). 2023 Oct 27;23(21):8768. doi: 10.3390/s23218768.
2
Portuino-A Novel Portable Low-Cost Arduino-Based Photo- and Fluorimeter.
Sensors (Basel). 2022 Oct 18;22(20):7916. doi: 10.3390/s22207916.
3
Ultrathin Optics-Free Spectrometer with Monolithically Integrated LED Excitation.
Micromachines (Basel). 2022 Feb 27;13(3):382. doi: 10.3390/mi13030382.
4
Designing an Ultrathin Film Spectrometer Based on III-Nitride Light-Absorbing Nanostructures.
Micromachines (Basel). 2021 Jun 28;12(7):760. doi: 10.3390/mi12070760.
5
Smartphone-based optical spectroscopic platforms for biomedical applications: a review [Invited].
Biomed Opt Express. 2021 Mar 10;12(4):1974-1998. doi: 10.1364/BOE.416753. eCollection 2021 Apr 1.

本文引用的文献

1
Highly Stable and Sensitive Nucleic Acid Amplification and Cell-Phone-Based Readout.
ACS Nano. 2017 Mar 28;11(3):2934-2943. doi: 10.1021/acsnano.6b08274. Epub 2017 Mar 2.
3
Molecular Beacon Nano-Sensors for Probing Living Cancer Cells.
Trends Biotechnol. 2017 Apr;35(4):347-359. doi: 10.1016/j.tibtech.2016.09.003. Epub 2016 Sep 28.
4
A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.
Biosens Bioelectron. 2017 Jan 15;87:686-692. doi: 10.1016/j.bios.2016.09.021. Epub 2016 Sep 9.
5
High-Throughput Optical Sensing Immunoassays on Smartphone.
Anal Chem. 2016 Aug 16;88(16):8302-8. doi: 10.1021/acs.analchem.6b02211. Epub 2016 Jul 28.
6
Nanoscale bio-platforms for living cell interrogation: current status and future perspectives.
Nanoscale. 2016 Feb 14;8(6):3181-206. doi: 10.1039/c5nr06694h. Epub 2016 Jan 8.
7
Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays.
ACS Nano. 2015 Aug 25;9(8):7857-66. doi: 10.1021/acsnano.5b03203. Epub 2015 Jul 14.
8
Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.
Int J Cancer. 2015 Mar 1;136(5):E359-86. doi: 10.1002/ijc.29210. Epub 2014 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验