Suppr超能文献

运动可预防高脂饮食诱导的雄性小鼠骨丢失、骨髓脂肪化和肠道菌群失调。

Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice.

机构信息

Department of Physiology, Michigan State University, East Lansing, MI, United States; Department of Radiology, Michigan State University, East Lansing, MI, United States; Biomedical Imaging Research Center, Michigan State University, East Lansing, MI, United States.

Department of Physiology, Michigan State University, East Lansing, MI, United States.

出版信息

Bone. 2019 Jan;118:20-31. doi: 10.1016/j.bone.2018.03.024. Epub 2018 Mar 29.

Abstract

High fat diets can have detrimental effects on the skeleton as well as cause intestinal dysbiosis. Exercise prevents high fat (HF) diet-induced obesity and also improves bone density and prevents the intestinal dysbiosis that promotes energy storage. Previous studies indicate a link between intestinal microbial balance and bone health. Therefore, we examined whether exercise could prevent HF-induced bone pathology in male mice and determined whether benefits correlate to changes in host intestinal microbiota. Male C57Bl/6 mice were fed either a low fat diet (LF; 10 kcal% fat) or a HF diet (60 kcal% fat) and put under sedentary or voluntary exercise conditions for 14 weeks. Our results indicated that HF diet reduced trabecular bone volume, when corrected for differences in body weight, of both the tibia (40% reduction) and vertebrae (25% reduction) as well and increased marrow adiposity (44% increase). More importantly, these effects were prevented by exercise. Exercise also had a significant effect on several cortical bone parameters and enhanced bone mechanical properties in LF but not HF fed mice. Microbiome analyses indicated that exercise altered the HF induced changes in microbial composition by reducing the Firmicutes/Bacteriodetes ratio. This ratio negatively correlated with bone volume as did levels of Clostridia and Lachnospiraceae. In contrast, the abundance of several Actinobacteria phylum members (i.e., Bifidobacteriaceae) were positively correlated with bone volume. Taken together, exercise can prevent many of the negative effects of a high fat diet on male skeletal health. Exercise induced changes in microbiota composition could represent a novel mechanism that contributes to exercise induced benefits to bone health.

摘要

高脂肪饮食除了会引起肠道菌群失调,还会对骨骼产生有害影响。运动可以预防高脂肪(HF)饮食引起的肥胖,还可以提高骨密度,防止促进能量储存的肠道菌群失调。先前的研究表明肠道微生物平衡与骨骼健康之间存在关联。因此,我们研究了运动是否可以预防雄性小鼠的 HF 饮食引起的骨病理学,并确定其益处是否与宿主肠道微生物群的变化相关。雄性 C57Bl/6 小鼠被喂食低脂饮食(LF;10%的脂肪)或高脂肪饮食(HF;60%的脂肪),并在久坐或自愿运动条件下进行 14 周。我们的结果表明,HF 饮食降低了胫骨(40%)和椎骨(25%)的小梁骨体积,当校正体重差异时,骨髓脂肪含量也增加了(44%)。更重要的是,运动可以预防这些影响。运动还对 LF 但不是 HF 喂养小鼠的几个皮质骨参数有显著影响,并增强了骨机械性能。微生物组分析表明,运动通过降低厚壁菌门/拟杆菌门的比例改变了 HF 诱导的微生物组成变化。该比例与骨体积呈负相关,梭菌和lachnospiraceae的水平也是如此。相比之下,几种放线菌门成员(双歧杆菌科)的丰度与骨体积呈正相关。总之,运动可以预防高脂肪饮食对雄性骨骼健康的许多负面影响。运动引起的微生物组成变化可能代表一种新的机制,有助于运动对骨骼健康的益处。

相似文献

1
Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice.
Bone. 2019 Jan;118:20-31. doi: 10.1016/j.bone.2018.03.024. Epub 2018 Mar 29.
2
Voluntary running of defined distances alters bone microstructure in C57BL/6 mice fed a high-fat diet.
Appl Physiol Nutr Metab. 2021 Nov;46(11):1337-1344. doi: 10.1139/apnm-2021-0061. Epub 2021 May 17.
3
Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity.
Physiol Behav. 2017 May 1;173:305-317. doi: 10.1016/j.physbeh.2017.02.027. Epub 2017 Feb 27.
4
Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats.
Bone. 2016 Apr;85:99-106. doi: 10.1016/j.bone.2016.02.004. Epub 2016 Feb 12.
5
Effects of exercise and dietary protein sources on adiposity and insulin sensitivity in obese mice.
J Nutr Biochem. 2019 Apr;66:98-109. doi: 10.1016/j.jnutbio.2019.01.003. Epub 2019 Jan 18.
7
Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice.
Am J Physiol Gastrointest Liver Physiol. 2017 May 1;312(5):G474-G487. doi: 10.1152/ajpgi.00427.2016. Epub 2017 Mar 9.
8
Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity.
PLoS One. 2014 Mar 26;9(3):e92193. doi: 10.1371/journal.pone.0092193. eCollection 2014.
9
Tributyltin protects against ovariectomy-induced trabecular bone loss in C57BL/6J mice with an attenuated effect in high fat fed mice.
Toxicol Appl Pharmacol. 2021 Nov 15;431:115736. doi: 10.1016/j.taap.2021.115736. Epub 2021 Oct 5.
10

引用本文的文献

3
Gut-bone axis perturbation: Mechanisms and interventions via gut microbiota as a primary driver of osteoporosis.
J Orthop Translat. 2025 Jan 21;50:373-387. doi: 10.1016/j.jot.2024.11.003. eCollection 2025 Jan.
4
Ischemic stroke reduces bone perfusion and alters osteovascular structure.
Bone Rep. 2025 Jan 4;24:101824. doi: 10.1016/j.bonr.2025.101824. eCollection 2025 Mar.
5
Trimethylamine-N-oxide accelerates osteoporosis by PERK activation of ATF5 unfolding.
Cell Mol Life Sci. 2024 Dec 24;82(1):13. doi: 10.1007/s00018-024-05501-y.
6
Gut microbiota and microbial metabolites for osteoporosis.
Gut Microbes. 2025 Dec;17(1):2437247. doi: 10.1080/19490976.2024.2437247. Epub 2024 Dec 17.
7
Prrx1-driven LINC complex disruption in vivo reduces osteoid deposition but not bone quality after voluntary wheel running.
PLoS One. 2024 Nov 20;19(11):e0307816. doi: 10.1371/journal.pone.0307816. eCollection 2024.
8
Microbiome's role in musculoskeletal health through the gut-bone axis insights.
Gut Microbes. 2024 Jan-Dec;16(1):2410478. doi: 10.1080/19490976.2024.2410478. Epub 2024 Oct 10.
9
Integrative analysis of the transcriptome and metabolome reveals the importance of hepatokine FGF21 in liver aging.
Genes Dis. 2023 Nov 7;11(5):101161. doi: 10.1016/j.gendis.2023.101161. eCollection 2024 Sep.
10
Evaluation of bone marrow glucose uptake and adiposity in male rats after diet and exercise interventions.
Front Endocrinol (Lausanne). 2024 Jun 14;15:1422869. doi: 10.3389/fendo.2024.1422869. eCollection 2024.

本文引用的文献

1
Advances in Probiotic Regulation of Bone and Mineral Metabolism.
Calcif Tissue Int. 2018 Apr;102(4):480-488. doi: 10.1007/s00223-018-0403-7. Epub 2018 Feb 16.
3
Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis.
J Clin Periodontol. 2018 Feb;45(2):204-212. doi: 10.1111/jcpe.12838. Epub 2017 Dec 11.
4
Probiotics in Gut-Bone Signaling.
Adv Exp Med Biol. 2017;1033:225-247. doi: 10.1007/978-3-319-66653-2_11.
5
Prebiotics and Bone.
Adv Exp Med Biol. 2017;1033:201-224. doi: 10.1007/978-3-319-66653-2_10.
6
Epithelial Barrier Function in Gut-Bone Signaling.
Adv Exp Med Biol. 2017;1033:151-183. doi: 10.1007/978-3-319-66653-2_8.
7
Inflammatory Bowel Disease: Effects on Bone and Mechanisms.
Adv Exp Med Biol. 2017;1033:133-150. doi: 10.1007/978-3-319-66653-2_7.
8
Immunology of Gut-Bone Signaling.
Adv Exp Med Biol. 2017;1033:59-94. doi: 10.1007/978-3-319-66653-2_5.
9
Diet and Exercise: a Match Made in Bone.
Curr Osteoporos Rep. 2017 Dec;15(6):555-563. doi: 10.1007/s11914-017-0406-8.
10
Bone Remodeling and the Microbiome.
Cold Spring Harb Perspect Med. 2018 Apr 2;8(4):a031203. doi: 10.1101/cshperspect.a031203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验