Suppr超能文献

皮层下来源主导言语神经电听觉频率跟随反应。

Subcortical sources dominate the neuroelectric auditory frequency-following response to speech.

机构信息

School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; Univeristy of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.

出版信息

Neuroimage. 2018 Jul 15;175:56-69. doi: 10.1016/j.neuroimage.2018.03.060. Epub 2018 Mar 28.

Abstract

Frequency-following responses (FFRs) are neurophonic potentials that provide a window into the encoding of complex sounds (e.g., speech/music), auditory disorders, and neuroplasticity. While the neural origins of the FFR remain debated, renewed controversy has reemerged after demonstration that FFRs recorded via magnetoencephalography (MEG) are dominated by cortical rather than brainstem structures as previously assumed. Here, we recorded high-density (64 ch) FFRs via EEG and applied state-of-the art source imaging techniques to multichannel data (discrete dipole modeling, distributed imaging, independent component analysis, computational simulations). Our data confirm a mixture of generators localized to bilateral auditory nerve (AN), brainstem inferior colliculus (BS), and bilateral primary auditory cortex (PAC). However, frequency-specific scrutiny of source waveforms showed the relative contribution of these nuclei to the aggregate FFR varied across stimulus frequencies. Whereas AN and BS sources produced robust FFRs up to ∼700 Hz, PAC showed weak phase-locking with little FFR energy above the speech fundamental (100 Hz). Notably, CLARA imaging further showed PAC activation was eradicated for FFRs >150 Hz, above which only subcortical sources remained active. Our results show (i) the site of FFR generation varies critically with stimulus frequency; and (ii) opposite the pattern observed in MEG, subcortical structures make the largest contribution to electrically recorded FFRs (AN ≥ BS > PAC). We infer that cortical dominance observed in previous neuromagnetic data is likely due to the bias of MEG to superficial brain tissue, underestimating subcortical structures that drive most of the speech-FFR. Cleanly separating subcortical from cortical FFRs can be achieved by ensuring stimulus frequencies are >150-200 Hz, above the phase-locking limit of cortical neurons.

摘要

频率跟随反应(FFR)是一种神经音波电位,可以提供一个了解复杂声音(例如言语/音乐)、听觉障碍和神经可塑性的窗口。虽然 FFR 的神经起源仍存在争议,但在证明通过脑磁图(MEG)记录的 FFR 主要由皮质而不是先前假设的脑干结构主导后,新的争议再次出现。在这里,我们通过 EEG 记录高密度(64 通道)FFR,并应用最先进的源成像技术对多通道数据(离散偶极子建模、分布式成像、独立成分分析、计算模拟)进行处理。我们的数据证实了位于双侧听神经(AN)、脑干下丘(BS)和双侧初级听觉皮层(PAC)的发生器的混合。然而,对源波形的频率特异性研究表明,这些核相对于总 FFR 的相对贡献随刺激频率而变化。虽然 AN 和 BS 源在高达约 700Hz 的频率下产生了强大的 FFR,但 PAC 的相位锁定较弱,在言语基频(100Hz)以上几乎没有 FFR 能量。值得注意的是,CLARA 成像进一步显示,超过 150Hz 的 FFR 时,PAC 激活被消除,超过该频率时,只有皮质下源仍然活跃。我们的结果表明:(i)FFR 产生的部位随刺激频率而发生变化;(ii)与 MEG 观察到的模式相反,皮质下结构对电记录的 FFR 贡献最大(AN≥BS>PAC)。我们推断,先前神经磁数据中观察到的皮质优势可能是由于 MEG 对浅层脑组织的偏好,低估了驱动大多数言语 FFR 的皮质下结构。通过确保刺激频率大于 150-200Hz(超过皮质神经元的相位锁定限制),可以实现将皮质下和皮质 FFR 清晰分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验