Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA.
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
J Chem Phys. 2018 Mar 28;148(12):123332. doi: 10.1063/1.5011056.
Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (r) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln r (r is the loading rate) exhibits two distinct linear regimes. The first, at low r, has a shallow slope, whereas the slope at high r is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow r range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low r or constant force, F, to a low value at high r or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant r and F) reveal a new mechanism for the two loading regimes observed in the rupture kinetics in CACs.
细胞黏附复合物 (CACs) 通过配体结合被激活,在许多细胞功能中发挥关键作用,范围从细胞周期调控到介导细胞与细胞外基质的黏附。受白细胞功能相关抗原-1 (LFA-1) 与细胞间黏附分子 (ICAM) 结合的单分子拉拔实验的启发,我们使用自组织聚合物模型对其进行了恒加载速率 (r) 和恒力 (F) 模拟,以描述从 CACs 中配体断裂的机制。这些模拟再现了断裂过程动力学的主要实验发现,即最可能断裂力 (f*s) 与 ln r (r 是加载速率) 的依赖性表现出两个明显的线性区域。第一个区域在低 r 时斜率较浅,而在高 r 时斜率较大,尤其是对于 LFA-1/ICAM-1 复合物,这两个区域之间的过渡发生在很窄的 r 范围内。从模拟中提取的两个过渡态 (TS) 的位置显示出从低 r 或恒力 F 时的高值到高 r 或 F 时的低值的突然变化。这种不寻常的行为是 CACs 从一种脆性(TS 位置在一定范围内的力下保持不变)状态切换到另一种脆性状态,而在其他蛋白质复合物的强制断裂中并未发现。我们通过构建作为包含多个关键带电残基和一个关键金属离子 (Mg) 的集体反应坐标 (Λ) 函数的自由能曲线 F(Λ)s 来解释这种新行为。与使用 Bell-Evans 模型提取的参数定量一致的 TS 位置在临界力下突然发生变化,表明它而不是分子延伸是一个很好的反应坐标。我们使用两种拉拔模式 (恒 r 和 F) 进行的模拟的综合分析揭示了 CACs 中观察到的两种加载模式的断裂动力学中的新机制。