Korea Institute for Advanced Study, Seoul 130-722, South Korea.
J Chem Phys. 2012 Aug 7;137(5):055103. doi: 10.1063/1.4739747.
Curvatures in the most probable rupture force (f*) versus log-loading rate (log r(f)) observed in dynamic force spectroscopy (DFS) on biomolecular complexes are interpreted using a one-dimensional free energy profile with multiple barriers or a single barrier with force-dependent transition state. Here, we provide a criterion to select one scenario over another. If the rupture dynamics occurs by crossing a single barrier in a physical free energy profile describing unbinding, the exponent ν, from (1 - f*/f(c))(1/ν) ~ (log r(f)) with f(c) being a critical force in the absence of force, is restricted to 0.5 ≤ ν ≤ 1. For biotin-ligand complexes and leukocyte-associated antigen-1 bound to intercellular adhesion molecules, which display large curvature in the DFS data, fits to experimental data yield ν < 0.5, suggesting that if ligand unbinding is assumed to proceed along one-dimensional pulling coordinate, the dynamics should occur in a energy landscape with multiple-barriers.
在生物分子复合物的动态力谱(DFS)中观察到的最可能断裂力(f*)与对数加载速率(log r(f))之间的弯曲用具有多个势垒的一维自由能分布或具有力依赖的过渡态的单个势垒来解释。在这里,我们提供了一个选择一个场景而不是另一个场景的标准。如果断裂动力学通过在描述解结合的物理自由能分布中穿过单个势垒发生,则指数 ν 满足 (1 - f*/f(c))(1/ν) ~ (log r(f)),其中 f(c) 是在没有力的情况下的临界力,限制为 0.5 ≤ ν ≤ 1。对于生物素配体复合物和与细胞间黏附分子结合的白细胞相关抗原-1,它们在 DFS 数据中显示出较大的曲率,对实验数据的拟合得到 ν < 0.5,这表明如果假设配体解结合沿一维拉伸坐标进行,则动力学应该发生在具有多个势垒的能量景观中。