Barsegov V, Thirumalai D
Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1835-9. doi: 10.1073/pnas.0406938102.
The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin-P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime t initially increases (catch bonds) at low (< or =10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody t monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin-G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin-sPSGL-1 complex is far (approximately 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein-protein complexes.
涉及细胞粘附分子的复合物的解离动力学取决于特定的配体。原子力显微镜测量表明,对于特定的P-选择素-P-选择素糖蛋白配体(sPSGL-1),在低(≤10 pN)恒定力f作用下,平均键寿命t最初会增加(捕获键),而当f>10 pN时则会减少(滑动键)。相比之下,对于与G1抗P-选择素单克隆抗体形成的复合物,t随f单调递减。为了定量描绘此类复合物的能量图景,我们使用了一个模型,该模型考虑了群体从一种无作用力状态重新分布到另一种力稳定结合状态的可能性。理论与实验之间的出色吻合使我们能够通过将计算曲线拟合到sPSGL-1和G1的寿命测量值来提取能量图景参数。令人惊讶的是,P-选择素-G1复合物的解离过渡态与结合态接近(0.32 nm),这意味着相互作用很脆弱,即一旦变形,复合物就会断裂。相比之下,P-选择素-sPSGL-1复合物的解离过渡态与结合态相距较远(约1.5 nm),表明其结构具有柔韧性。恒定f能量图景参数用于计算作为加载速率rf的函数的解离时间和解离力的分布。对于给定的rf,sPSGL-1的解离发生在更宽的f范围内,最可能的f比G1的小一个数量级。细胞粘附复合物的理论可用于预测其他蛋白质-蛋白质复合物的解离结果。