Suppr超能文献

一种用于从环境DNA估计水生物种密度的分析框架。

An analytical framework for estimating aquatic species density from environmental DNA.

作者信息

Chambert Thierry, Pilliod David S, Goldberg Caren S, Doi Hideyuki, Takahara Teruhiko

机构信息

Ecosystem Science and Management Pennsylvania State University University Park PA USA.

CEFE Univ Montpellier CNRS Univ Paul Valéry Montpellier 3EPHE, IRD Montpellier France.

出版信息

Ecol Evol. 2018 Feb 25;8(6):3468-3477. doi: 10.1002/ece3.3764. eCollection 2018 Mar.

Abstract

Environmental DNA (eDNA) analysis of water samples is on the brink of becoming a standard monitoring method for aquatic species. This method has improved detection rates over conventional survey methods and thus has demonstrated effectiveness for estimation of site occupancy and species distribution. The frontier of eDNA applications, however, is to infer species density. Building upon previous studies, we present and assess a modeling approach that aims at inferring animal density from eDNA. The modeling combines eDNA and animal count data from a subset of sites to estimate species density (and associated uncertainties) at other sites where only eDNA data are available. As a proof of concept, we first perform a cross-validation study using experimental data on carp in mesocosms. In these data, fish densities are known without error, which allows us to test the performance of the method with known data. We then evaluate the model using field data from a study on a stream salamander species to assess the potential of this method to work in natural settings, where density can never be known with absolute certainty. Two alternative distributions (Normal and Negative Binomial) to model variability in eDNA concentration data are assessed. Assessment based on the proof of concept data (carp) revealed that the Negative Binomial model provided much more accurate estimates than the model based on a Normal distribution, likely because eDNA data tend to be overdispersed. Greater imprecision was found when we applied the method to the field data, but the Negative Binomial model still provided useful density estimates. We call for further model development in this direction, as well as further research targeted at sampling design optimization. It will be important to assess these approaches on a broad range of study systems.

摘要

对水样进行环境DNA(eDNA)分析即将成为监测水生物种的标准方法。与传统调查方法相比,该方法提高了检测率,因此在估计栖息地占用情况和物种分布方面已证明其有效性。然而,eDNA应用的前沿是推断物种密度。基于先前的研究,我们提出并评估了一种旨在从eDNA推断动物密度的建模方法。该模型将来自部分地点的eDNA和动物数量数据相结合,以估计在仅有eDNA数据的其他地点的物种密度(以及相关不确定性)。作为概念验证,我们首先使用中宇宙中鲤鱼的实验数据进行了交叉验证研究。在这些数据中,鱼类密度已知且无误差,这使我们能够用已知数据测试该方法的性能。然后,我们使用来自一项关于溪流蝾螈物种研究的实地数据评估该模型,以评估该方法在自然环境中应用的潜力,在自然环境中密度永远无法绝对确定。我们评估了两种用于模拟eDNA浓度数据变异性的替代分布(正态分布和负二项分布)。基于概念验证数据(鲤鱼)的评估表明,负二项分布模型比基于正态分布的模型提供了更准确的估计,这可能是因为eDNA数据往往过度分散。当我们将该方法应用于实地数据时,发现精度较低,但负二项分布模型仍提供了有用的密度估计。我们呼吁在这个方向上进一步开展模型开发,以及针对采样设计优化的进一步研究。在广泛的研究系统中评估这些方法将很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22d8/5869225/93d3f72cf900/ECE3-8-3468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验